Studies on the mechanisms of action and development of resistance to class II bacteriocins of Gram-positive bacteria
DOI:
https://doi.org/10.18388/pb.2021_517Abstract
Bacteriocins are peptides or proteins produced by bacteria to kill or inhibit the growth of other bacteria inhabiting the same ecological niche. The growing interest in bacteriocins reflects their potential use in food preservation and treatment of infections caused by antibiotic-resistant pathogenic bacteria, among other applications. The number of published studies on the identification of new bacteriocin-producing strains is constantly increasing. At the same time, there is a noticeable lack of research describing the mechanisms of action of most newly identified bacteriocins, as well as the mechanisms leading to the development of resistance to these bacteriocins and cross-resistance to antibiotics. Detailed understanding of these issues will allow to develop guidelines ensuring the most effective, safe and long-term use of bacteriocins without the risk of resistance development. This work describes the main assumptions of the doctoral dissertation of Aleksandra Tymoszewska, which objectives were to characterize the mechanisms of action and of resistance to class II bacteriocins of Gram-positive bacteria. Using the model bacterium Lactococcus lactis, two groups of bacteriocins were examined: (i) garvicins Q, A, B and C, and BacSJ; and (ii) aureocin A53 (AurA53)- and enterocin L50 (EntL50)-like bacteriocins. Bacteriocins of group (i) have been shown to recognize susceptible cells and form pores in the cell membrane using a specific receptor, the mannose-specific phosphotransferase system (Man-PTS), and sensitive bacteria have been shown to acquire resistance to the these bacteriocins by modifying the structure of Man-PTS. On the other hand, the acquisition of resistance to group (ii) membrane-targeting and receptor-independent bacteriocins occurs through changes in the structure of the bacterial cell wall and membrane, which are induced by changes in the expression of proteins involved in lipid metabolism or components of the YsaCB-KinG-LlrG regulatory system. The results shed new light on previous views on the mechanisms of action of bacteriocins and open up opportunities for their further study.
Downloads
Published
License
Copyright (c) 2024 Aleksandra Tymoszewska, Tamara Aleksandrzak-Piekarczyk
This work is licensed under a Creative Commons Attribution 4.0 International License.
All journal contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made, ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. There are no additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.