Glutamate receptors in the dopamine system – function and role in reinforcement learning
DOI:
https://doi.org/10.18388/pb.2021_395Abstract
Midbrain dopamine neurons along with the major target of their projections, dopaminoceptive neurons in striatum, regulate reinforcement learning and motivation. The activity and plasticity in the dopamine system are largely dependent on excitatory glutamatergic transmission. The article describes the functional role of N-methyl-D-aspartate (NMDA) receptors in driving the phasic activity in dopamine neurons,
and a role of NMDA and metabotropic glutamate 5 (mGluR5) receptors in induction of plasticity in dopaminoceptive striatal medium spiny neurons. Based on published studies on genetically modified mice, the article further discusses how targeted loss of glutamate receptor-dependent signalling in dopamine system affects reinforcement learning and motivational processes. The conclusion of the article is the view
that aberrant glutamate signalling in dopamine system may contribute to maladaptive behaviours, which are particularly often observed in mental disorders.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Advances in Biochemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
All journal contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made, ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. There are no additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.