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				ABSTRACT

				Vascular calcification accompanies the pathological process of atherosclerotic plaque formation. Artery calcification results from trans-differentiation of vascular smooth muscle cells (VSMCs) into cells resembling mineralization-competent cells such as osteoblasts and chondrocytes. The activity of tissue-nonspecific alkaline phosphatase (TNAP), a GPI-anchored enzyme necessary for physiological mineralization, is induced in VSMCs in response to inflammation. TNAP achieves its mineralizing function being anchored to plasma membrane of mineralizing cells and to the surface of their derived matrix vesicles (MVs), and numerous important reports indicate that membranes play a crucial role in initiating the crystal formation. In this review, we would like to highlight various functions of lipids and proteins associated to membranes at different stages of both physiological mineralization and vascular calcification, with an emphasis on the pathological process of atherosclerotic plaque formation.

				INTRODUCTION

				Mineralization is a physiological process by which growth plate chondrocytes and osteoblasts deposit calcium phosphate crystals during endochondral and membranous ossification respectively. This process is initiated by TNAP activity [1,2]. Deficiency of this enzyme in human cells results in a severe disease called hypophosphatasia (HPP) causing in utero death of fetuses devoid of mineralized skeleton [3,4]. TNAP activity is necessary for physiological mineralization, but also probably for the induction of vascular calcification. Glycosylphosphatidylinositol (GPI)-anchored proteins such as TNAP may associate with lipid rafts, which are lipid membrane microdomains. In this article we would like to consider a possible role of lipid rafts in sorting and release of MVs as well as to discuss a stimulating effect of saturated fatty acids and cholesterol on vascular calcification.

				EARLY STEPS OF PHYSIOLOGICAL MINERALIZATION

				BONE MINERALIZATION REQUIRES COEXPRESSION OF TNAP AND COLLAGEN

				Physiological mineralization is regulated by the changes of inorganic phosphate (Pi) and inorganic pyrophosphate (PPi) homeostasis. PPi is a constitutive inhibitor of mineralization, which is hydrolyzed by TNAP [5]. According to Murshed and collaborators [1], mineralization process is restricted to bone tissue due to the unique co-expression of genes encoding two important proteins – TNAP and collagen type I. These molecules are necessary and sufficient to trigger the extracellular matrix (ECM) mineralization. In fact, this hypothesis can be helpful to understand also the process of soft tissue calcification that may occur in cells producing fibrillar collagen where ectopic expression of TNAP could be responsible for the occurrence of pathological mineralization.
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				MATRIX VESICLES RICH IN PHOSPHATASES AND ANNEXINS BIND TO COLLAGEN

				Early stages of mineralization take place in MVs which are 30-1,000 nm-diameter structures [6,7]. Since TNAP is an ectoenzyme located on the surface of MVs, it may be, together with collagen fibrils, involved in crystal growth and multiplication outside MVs. It is therefore likely that other enzymes are present inside MVs to allow hydroxyapatite (HA) crystal nucleation. Phosphatase orphan 1 (phospho1) was proposed as a novel phosphatase providing Pi, as it is highly expressed in bone and MVs [8]. Phospho1 is able to cleave phosphatidylcholine (PC) and phosphatidylethanolamine (PE), the most abundant phosphomonoesters in cartilage. In contrast to TNAP, phospho1 is not able to hydrolyze PPi. Interestingly, double ablation of Phospho1 and Alpl (encoding TNAP), completely abolishes mineralization of osteoblast-derived MVs [9].

				Except from TNAP and phospho1, other important components highly expressed in MVs are annexins (AnxA) which are calcium- and lipid-binding proteins [10]. It has been shown previously [11] that in growth plate cartilage, MVs are able to bind type II and X collagen. This interaction seems to be mediated by AnxA5 resulting in the stimulation of Ca2+ uptake and mineralization of MVs. Vesicle binding to collagen may play a crucial role in formation of the first mineral phase, regarding the fact that selective removal of collagens from the MV surface significantly reduced their ability to take up Ca2+ [12]. Therefore, collagen may serve as a template for the subsequent deposition of HA crystals originating from MVs.

				THE INITIATION OF MINERALIZATION 
IN MVs IS ASSOCIATED WITH THE MEMBRANES CONTAINING PHOSPHATIDYLSERINE

				The internal layer of MVs is rich in phosphatidylserine (PS), a lipid that has a high affinity to Ca2+ ions and is able to bind both calcium and phosphate. Early mineralization in MVs begins with the formation of membrane-anchored structures known as nucleation core (NC) [13]. NC consists of three key components: amorphous calcium phosphate (ACP), PS-lipid-calcium-phosphate complex (PS-CPLX) and AnxA5. ACP comprises nearly 90% of NC, however, in vitro studies on synthetic NCs revealed that ACP mediates only 20% of mineral formation [14]. Also, incorporation of PS was shown to significantly retard the induction time of mineral formation. Interestingly, AnxA5 is able to catalyze the mineral nucleation of CPLX, shortening the process by 10–20 fold, by transforming the weakly nucleating binary PS-CPLX into a ternary complex (PS-CPLX-AnxA5) with powerful nucleation activity [14].

			

			
				Annexins are also thought to mediate Ca2+ influx into MVs. Kirsch and collaborators demonstrated that if MVs isolated from non-mineralizing hypertrophic chondrocytes showed no significant Ca2+ uptake, addition of exogenous AnxA2, AnxA5 and AnxA6, could restore these MVs’ ability to take up Ca2+ [11]. However, these proteins are not typical ion channels and they probably rather facilitate calcium binding than transport calcium through the membrane. Nevertheless, further investigation in vivo is needed to better understand the role of annexins in Ca2+ influx into MVs.

				In conclusion, membranes or more precisely membrane lipids could play an important role in mineralization. Therefore, better insight into the composition of membrane domains involved in MV formation and mineralization appears crucial.

				LIPID RAFTS – MEMBRANE MICRODOMAINS RICH IN CHOLESTEROL AND SPHINGOLIPIDS

				Biological membranes are not homogeneous lipid mixtures but they are rather composed of highly organized lipid and protein complexes called lipid rafts. The term lipid rafts, also referred to lipid microdomains, has been used to describe low-density membrane domains that are rich in cholesterol (Chol) and sphingolipids and particular protein classes such as signaling and transport proteins [15]. Recently, there has been a great interest in different subtypes of lipid microdomains that can be distinguished according to their protein and lipid composition. Specialized microdomains termed ‘caveolae’ constitute a distinct subset of lipid rafts with morphologically defined cell surface invaginations that are rich in proteins of the caveolin family [16,17].

			

			
				Table 1. Comparison of the lipid composition of rafts and MVs [25,27,28]

				
					
						
								
							
								
								Lipid rafts

							
								
								MVs

							
						

						
								
								Lipids               (relative molar composition)

							
						

						
								
								Chol

							
								
								50

							
								
								20

							
						

						
								
								Sphingomyelin

							
								
								30

							
								
								5

							
						

						
								
								Glycerophospholipids         (relative molar composition)

							
						

						
								
								PC

							
								
								52

							
								
								52

							
						

						
								
								PS

							
								
								45

							
								
								12

							
						

						
								
								PE

							
								
								20

							
								
								20

							
						

						
								
								PI

							
								
								10

							
								
								8

							
						

						
								
								FAs          (relative molar composition)

							
						

						
								
								palmitic acid (16:0)

							
								
								24.1

							
								
								35.34

							
						

						
								
								palmitoleic acid (16:1n-7)

							
								
								1.08

							
								
								2.56

							
						

						
								
								stearic acid (18:0)

							
								
								22.05

							
								
								13.06

							
						

						
								
								oleic acid (18:1n-9)

							
								
								17.64

							
								
								27.25

							
						

						
								
								PUFAs          (relative molar composition)

							
						

						
								
								linoleic acid (18:2n-6)

							
								
								0.85

							
								
								7.58

							
						

						
								
								arachidonic acid (20:4n-6)

							
								
								3.7

							
								
								5.61

							
						

					
				

				

			

			
				As mentioned above, lipid rafts are invariably characterized by their high content of Chol and sphingolipids. However, lipid rafts can differ in their composition depending on the cell type [18] and the way of their preparation. In general, lipid rafts were shown to be rich in Chol and glycosphingolipids, but often poor in glycerophospholipids [19-24]. Glycerophospholipids were represented by a high content of PE, PS and PC and a lower content of PI [23,25]. However, the phospholipid profile of lipid rafts may vary considerably. For example, platelets contain PS-enriched membrane rafts [26]. Moreover, in chondrocyte lipid rafts PS accounts for over 44% of the total phospholipids [27].

			

			
				The fatty-acid side chains of lipid raft phospholipids tend to be more saturated than those in the surrounding membrane. The ratio of saturation-unsaturation of lipid raft fatty-acid side chains was assessed in numerous studies. It appears that the predominant fatty acids in lipid rafts are saturated (16:0, 18:0) and monounsaturated (18:1 n-9 and 18:1 n-7). PC mainly comprised saturated 16:0, while PE contained more 18:0 [20]. The higher content of 16:0 in PC and of 18:0 in PE is consistent with the known predilection of these fatty acids for the sn-1 position of the corresponding glycerophospholipids [20]. A similar enrichment of 16:0 and 18:0 fatty acids in lipid rafts of various cell types was observed [22, 28,29].

				MATRIX VESICLES MEMBRANE COMPOSITION: THE SAME OR DIFFERENT FROM LIPID RAFTS?


				It has been suggested that MVs may originate from apical membrane microvilli [7] and exhibit a characteristic lipid composition that resembles that of lipid rafts (Tab. 1). The proportion of free cholesterol and the cholesterol/phospholipid ratio was nearly twice as high in lipid rafts as in MVs. MVs and microvilli obtained from Saos-2 osteosarcoma cell cultures were rich in Chol and sphingolipids [30] as in the case of MVs produced by epiphyseal cartilage cells [31,32] or by hypertrophic chondrocytes [33]. The phospholipid composition of MVs presented mostly PC and PE, and, to a lesser extent, PS [27].

				Fatty acid patterns of MVs were distinguishable from those of isolated cells, being generally richer in 16:0 and 18:1, and presenting lower content of 16:1 and 18:2 fatty acids (FAs). The predominant saturated FAs in different fractions were palmitic and stearic acid (16:0, 18:0). Membrane homogenates contained 62% of saturated FAs on average as compared with 48–51% of saturated FAs in MVs. The greatest difference in FA content in different fractions was observed in the monounsaturated FAs. Monounsaturated FAs, specifically the level of oleic acid (18:1n-9), was higher in MVs (27.25%) than in membrane homogenates derived from chondrocytes (6.48%) [30]. It is noteworthy that the total ratio of n-3 to n-6 polyunsaturated fatty acids (PUFAs) is markedly lower in rafts as well as in MVs, which is in accordance with a particular lipid composition of these domains, as commonly reported.

			

			
				Table 2. Comparison of the protein profiles of lipid rafts and MVs [40,47]

				
					
						
								
							
								
								Lipid rafts

							
								
								MVs

							
						

						
								
								Enzymes

								alkaline phosphatase

								5’-nucleotidase

								inorganic pyrophosphatase 1

								phospho1

								sphingomyelin phosphodiesterase 3

							
								
								


								+

								+

								+

								–

								+

							
								
								


								+

								+

								+

								+

								+

							
						

						
								
								Ca2+ ion homeostasis

								voltage dependent calcium channel

								sorcin

							
								
								


								+

								–

							
								
								


								+

								+

							
						

						
								
								Annexins

								AnxA1, AnxA2, AnxA4, AnxA5, AnxA6, AnxA7 and AnxA11

							
								
								


								+

							
								
								


								+

							
						

						
								
								Transport/channel proteins

								Na+/K+ ATPase

								Kv3.1 potassium channel subunit

							
								
								


								+

								+

							
								
								


								+

								–

							
						

						
								
								Intravesicular pH

								vacuolar H+-ATPase

								SLC4A7

							
								
								


								+

								+

							
								
								


								+

								+

							
						

						
								
								ECM proteins

								MMP-2

								MMP-3

								MMP-13

							
								
								


								+

								–

								–

							
								
								


								+

								+

								+

							
						

						
								
								Regulatory proteins

								Ras GTPase-activating protein

								protein kinase C

							
								
								


								+

								+

							
								
								


								+

								+

							
						

						
								
								Cytoskeletal proteins

								vimentin, tropomyosin

								filamin B

								actin, tubulin
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								+

								+

							
								
								


								+

								+

								+

							
						

						
								
								Endocytosis

								caveolin-1

								flotillin-1
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								+

							
								
								


								+

								+

							
						

						
								
								TCR-associated signaling molecules

								TCR-R

								Lck

								Calmodulin
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								+

								+

							
								
								


								–

								–

								+

							
						

						
								
								Heatshock proteins

								HSP60

								HSP90
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								–
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								GTP-binding regulatory proteins
Gs(α)
Gi(α)-2
Gq
Gβ2
Gβ4

							
								
								
+
+
+
+
+

							
								
								
–
+
+
+
–

							
						

						
								
								Intrinsic membrane proteins
stomatin-like protein 2

							
								
								
+

							
								
								
+

							
						

					
				

				

			

			
				Membrane lipid raft microdomains organize signaling molecules into functional complexes for targeted transport of transmembrane and GPI-anchored proteins and hence their protein composition is highly fluctuating (Tab. 2) [34]. Caveolin-1 is one of the essential proteins serving as a scaffold in caveolar raft formation and playing a key role in caveolae-mediated endocytosis and transport. However, other proteins serving similar functions by providing platforms for the assembly of signaling molecules are found in caveolin-independent rafts. Reggies and flotillins are also an indispensable prerequisite for raft formation in non caveolar or so-called reggie microdomains [35,36].

				Proteome analysis of lipid rafts prepared from various cells revealed the presence of following components: TCR-associated signaling molecules (TCR-R, Lck, 
calmodulin); cytoskeletal proteins or proteins involved in locomotion and membrane function (vimentin, tubulin, actin, tropomyosin), or specific protein components connecting actin with the extracellular matrix AnxA2 [20]; heat shock proteins (HSP60, HSP90); GTP-binding regulatory proteins (Gs(α), Gi(α)-2, Gq, Gβ2, Gβ4); intrinsic membrane proteins (stomatin-like protein); and transport/channel proteins (Kv3.1 potassium channel subunit, H+ transporting ATPase) [37-39].

				Recently, a mammalian raft proteome database was established based on multiple proteomic studies in a variety of cells and tissues [40]. Results from numerous biological processes and pathway analysis provide evidence supporting the hypothesis that lipid rafts are related to different cellular functions such as membrane transport and trafficking [34,41], signal transduction [15,42], cell junctions [43,44], and cytoskeleton organization [42,45].

			

			
				Protein profile of MVs can be divided into following functional categories: ECM proteins, enzymes, annexins, surface receptors, transporters, regulatory proteins and cytoskeleton components [46,47]. Thouverey and collaborators succeeded in identifying novel proteins that may regulate PPi and Pi homeostasis (inorganic pyrophosphatase 1), Ca2+ ion homeostasis (voltage dependent Ca2+ channel and sorcin), intravesicular pH (vacuolar H+-ATPase and SLC4A7, a sodium bicarbonate cotransporter) or lipid composition of MV membrane (sphingomyelin phosphodiesterase 3) [48]. The presence of several enzymes (alkaline phosphatase, 5’-nucleotidase), protein transporters (Na+/K+ ATPase for example), regulatory proteins (Ras GTPase-activating protein, protein kinase C), cytoskeleton elements (filamin B, tubulin) and annexins (AnxA1, AnxA2, AnxA4, AnxA5, AnxA6 and AnxA11) both in lipid raft and MVs revealed a link between these two membrane domains, therefore, it may indicate the involvement of rafts in sorting and release of MVs.

				THE EFFECT OF CHOLESTEROL 
AND FATTY ACIDS ON PATHOLOGICAL CALCIFICATION IN ATHEROSCLEROSIS

				ATHEROSCLEROSIS AND VASCULAR CALCIFICATION

				Pathological calcification is a hallmark of atherosclerosis. In humans, the earliest atherosclerotic lesions can usually be found in aorta in the first decade of life, and consist of subendothelial accumulations of lipids. Then, cholesterol-engorged macrophages, called “foam cells”, characterize the type II “fatty streak” lesions. In type II lesions, VSMCs begin to migrate from the media towards the intima to secrete a “fibrous cap” enclosing a lipid core. Vascular calcification in atherosclerotic plaques is usually noted in stage III specimens, with intermediate and solid calcifications becoming increasingly prominent within advanced plaques [49,50]. It has been estimated that over 70% of atherosclerotic plaques observed in the aging population are calcified [51].
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				Figure 1. The effect of Chol and FAs on VSMCs [57-64]. In VSMCs, palmitate and stearate generate saturated phosphatidic acid in the ER, triggering ER stress, activation of ATF4 and trans-differentiation, leading to vascular calcification. Unsaturated FAs such as palmitoleate and oleate seem to protect against calcification by decreasing ER stress. Omega 3 FAs can also inhibit mineralization by activating PPARγ, an endogenous inhibitor of calcification in VSMCs. The mechanism through which Chol stimulates mineralization is not known. One of the hypothesis is that, similarly to saturated FAs, it may provoke ER stress leading to trans-differentiation of VSMCs into mineralization-competent cells.

			

			
				Plaque calcification results at least in part from the trans-differentiation of VSMCs into cells similar to growth plate chondrocytes. Indeed, in the apolipoprotein E-deficient (ApoE-/-) mouse model of atherosclerosis, calcified cartilage forms in advanced plaques [52,53]. In these mice, VSMC-derived hypertrophic chondrocytes are likely responsible for calcification since VSMC-specific RUNX2 deficiency prevents plaque calcification [54]. Finally, VSMC-derived chondrocytes appear to release MVs virtually identical to those released by hypertrophic chondrocytes [55].

				CHOLESTEROL AND SEVERAL FATTY ACIDS ARE STIMULATORS OF CALCIFICATION

				FAs appear to play an important role in calcification mediated by VSMCs in atherosclerotic plaques (Fig. 1). Four main FAs: palmitic acid, stearic acid, oleic acid and arachidonic acid, were reported to represent two thirds of the fatty acid pool in atherosclerotic plaques of ApoE-/- mice on a high-cholesterol diet [56]. Trans-differentiated VSMCs predominantly accumulate saturated and mono-unsaturated FAs: palmitate and stearate, palmitoleate [C16:1 (n-7)] and oleate [C18:1 (n-9)], but not polyunsaturated acids such as arachidonic acid [57]. Of these, palmitate and stearate appear able to stimulate trans-differentiation of VSMCs [57-59], whereas unsaturated FAs reduce calcium accumulation [56].

				Interestingly, endogenous stearate production strongly stimulates mineralization in VSMC cultures, and inhibition of stearoylCoA desaturase exacerbates calcification [56], suggesting that both exogenous and endogenous saturated FAs may participate in vascular calcification. In VSMCs, saturated FAs generate saturated phosphatidic acid in the ER, triggering ER stress, activation of ATF4 and VSMC trans-differentiation leading to calcification [60]. The mechanisms through which unsaturated FAs protect against calcification are not fully known. The conversion of saturated to unsaturated FAs may reduce the ER stress [59]. Alternatively, omega 3 FAs appear to inhibit calcification by activating peroxisome proliferator-activated receptor γ (PPARγ) [61], an endogenous inhibitor of calcification in VSMCs [62].

				Cholesterol stimulates TNAP and mineralization in a dose-dependent manner in VSMCs [63,64]. Remarkably, stimulation of cholesterol efflux, inhibition of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase and the lack of LDL receptor, alone or in combination, appear to decrease vascular cell differentiation and calcification [62,63]. The mechanism through which cholesterol stimulates mineralization is not known. It may provoke ER stress as saturated fatty acids do, but it may also modulate membrane dynamics leading to MV release [62].

			

			
				CONCLUDING REMARKS

				Taking into account the lipid composition of rafts and MVs, both structures are enriched in cholesterol, phosphatidylcholine and saturated fatty acids. These similarities suggest that lipid rafts may be necessary for the release of MVs, being a critical step during both physiological and pathological mineralization. Thanks to protein databases of lipid rafts and MVs, it is possible to compare the protein profile of these structures and, in consequence, to draw conclusions and form hypothesis concerning the mechanisms in which they are involved. A possible association of proteins normally expressed in mineralizing MVs (e. g. TNAP, annexins) with lipid rafts allows to suspect that these membrane microdomains may be involved in mineralization. However, further investigation of the stimulating role of saturated fatty acids and cholesterol is important to better understand the pathological process of vascular calcification.
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				STRESZCZENIE

				Zwapnienie ścian naczyń krwionośnych towarzyszy procesowi odkładania się blaszki miażdżycowej. Jest ono wynikiem transdyferencjacji komórek mięśni gładkich w kierunku komórek zdolnych do mineralizacji, o fenotypie zbliżonym do osteoblastów i chondrocytów. Aktywność tkankowo niespecyficznej alkalicznej fosfatazy (TNAP), enzymu niezbędnego w zapoczątkowaniu procesu fizjologicznej mineralizacji, może być również indukowana w komórkach mięśni gładkich naczyń w odpowiedzi na stan zapalny. TNAP zyskuje swą zdolność do mineralizacji dzięki zakotwiczeniu w błonach komórek mineralizujących lub w błonach wydzielonych przez nie pęcherzyków macierzy pozakomórkowej (MV). Najnowsze doniesienia wskazują na kluczową rolę błon w zapoczątkowaniu procesu tworzenia się minerału. W niniejszym artykule przeglądowym zostały opisane funkcje białek i lipidów związanych z błonami komórkowymi w procesach fizjologicznej oraz patologicznej mineralizacji, ze szczególnym uwzględnieniem procesów towarzyszących miażdżycy.

			

		

	cover_image.jpg
2145 roszkowska
epub_5

PB











images/00007.jpeg
palmitoleate paimitate
erte A Py ER st
chotesterol? l

e

ealfication

vse ikacell ]






