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The roles of annexins in vascular endothelium dysfunction 
accompanying diabetes mellitus type 2

ABSTRACT

Impairment in cellular transport, distribution and storage of cholesterol accompanies in-
sulin resistance and diabetes mellitus type 2 as well as other diseases such as obesity, 

atherosclerosis, and non-alcoholic fatty liver disease. Diabetes mellitus type 2 is a metabol-
ic disorder that is characterized by hyperglycemia in the context of insulin resistance and 
relative lack of insulin. Type 2 diabetes makes up about 90% of cases of diabetes. Several 
therapeutic strategies are today being considered to target diabetes mellitus type 2, and the 
accompanying endothelial dysfunction, but none as yet has proved satisfactory. Accumu-
lating data suggest that annexins, as cholesterol binding proteins that participate in intra-
cellular transport and storage of cholesterol and in the organization of plasma membrane, 
may participate in development and sustenance of diabetes mellitus type 2 and may serve as 
predictive markers of this disease.

INTRODUCTION

It is thought that reduced sensitivity of cells to insulin (the insulin resistance 
syndrome -anomalous response to insulin-mediated glucose disposal) and de-
velopment of type 2 diabetes (T2D) is related to obesity and is particularly dan-
gerous for people who are genetically predisposed to it. Such patients frequently 
display elevated blood pressure and hyperlipidemia. Substantial clinical and 
experimental evidence suggests that both diabetes and insulin resistance cause a 
combination of endothelial dysfunctions [1-3]. It is postulated that a synergistic 
interaction may exist in which endothelial dysfunction contributes to insulin re-
sistance and T2D and vice versa (Fig. 1).

Moreover, a growing number of evidence suggests that reduced sensitivi-
ty of cells to insulin is related to the level of adiponectin, a protein hormone 
that modulates a number of metabolic processes, including glucose metabolism 
and fatty acid oxidation. Adiponectin is secreted from the adipose tissue to the 
bloodstream and plays a role in insulin resistance [4]. Low adiponectin may 
contribute to disturbed reverse cholesterol transport (RCT) in T2D and devel-
opment of endothelial dysfunction [5]. Moreover, it has been reported that in 
monocytes adiponectin may reduce expression of annexin A6 (AnxA6), that in 
turn inhibits cholesterol efflux. Furthermore, the level of AnxA6 positively cor-
relates with body mass index and negatively with the level of adiponectin in the 
blood; AnxA6 is abundant in monocytes from obese and type 2 diabetes individ-
uals. It has been demonstrated that adiponectin reduced AnxA6 and enhanced 

Figure 1. Progression of endothelial dysfunction in relation to the progression of insulin resistance (adapted 
from [65]).
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cholesterol efflux in monocytes [6]. It has to be underlined 
that several therapeutic strategies are today being consid-
ered to target diabetes mellitus type 2 and the accompany-
ing endothelial dysfunction but none proved satisfactory 
so far. In addition, the mechanism of abnormal cholesterol 
metabolism is not well understood. A locus on chromosome 
9p13-q21 containing the gene ANXA1 encoding annexin A1, 
a protein suggested to participate in insulin secretion and 
propagation of insulin signal, has been identified [7].

On the basis of observations mentioned above, in this ar-
ticle I propose that some annexins, as cholesterol binding 
proteins that participate in intracellular transport and stor-
age of cholesterol and in organization of plasma membranes 
in endothelial cells, may participate in development of T2D. 
and may serve as predictive markers of this disease.

IMPAIRED EFFLUX OF CHOLESTEROL IN 
ENDOTHELIAL DYSFUNCTION ACCOMPANYING 
DIABETES MELLITUS TYPE 2 AND ATHEROSCLEROSIS

Type 2 diabetes is a metabolic disorder characterized by hy-
perglycemia and relative lack of insulin. The classic symptoms 
are excess thirst, frequent urination, and constant hunger. T2D 
accounts for about 90% of cases of diabetes, with the other 10% 
due primarily to diabetes mellitus type 1 and gestational di-
abetes. Obesity is thought to be the primary cause of type 2 
diabetes in people who are genetically predisposed to the dis-
ease. Fraction of type 2 diabetes mellitus cases associated with 
physical inactivity ranges from 3% to 40% [8,9]. The incidence 
rates of T2D have increased markedly since 1960 in parallel 
with obesity. As of 2010 there were approximately 285 mil-
lion people diagnosed with the disease compared to around 
30 million in 1985. Long-term complications from high blood 
sugar can include heart disease, strokes, diabetic retinopathy, 
kidney failure, and poor blood flow in the limbs. Most cases of 
diabetes involve many genes, each being a small contributor 
to an increased probability of T2D development . As of 2011, 
more than 36 genes that contribute to the risk of T2D have been 
identified. However, all these genes still account for only 10% 
of the total heritable component of the disease [10,11].

In the light of the results of recent experiments it appears 
that recovery of physiological response of endothelial cells 
to insulin at an early stage of development of insulin resis-
tance could have important therapeutic impact.

The principal causes of morbidity and mortality in T2D 
are coronary artery, cerebrovascular and peripheral vascu-
lar diseases. The accelerated macrovascular disease in type 
2 diabetes mellitus is due partly to the increased incidence 
of cardiovascular risk factors, such as hypertension, obesity 
and dyslipidemia. The endothelium is a major organ exposed 
to cardiovascular risk factors, such as hypercholesterolemia, 
hypertension, inflammation, ageing, postmenopausal status, 
and smoking. Changes in endothelium function may lead to 
the coronary artery circulation being unable to cope with the 
increased metabolism of myocardial muscle independently 
of a reduced coronary artery diameter [12].

Endothelial dysfunction (vascular endothelium being the 
most studied target) can arise due to insulin resistance, dys-

lipidemia or hypertension that accompany T2D [13]. Vascu-
lar endothelium has important regulatory functions in the 
cardiovascular system and a pivotal role in the maintenance 
of vascular health and metabolic homeostasis. It has long 
been recognized that endothelial dysfunction participates 
in the pathogenesis of atherosclerosis from early preclinical 
lesions to advanced thrombotic complications. In addition, 
endothelial dysfunction has been recently implicated in the 
development of insulin resistance and T2D [14].

In T2D, the structure and composition of high-density 
lipoprotein (HDL) is altered compared with HDL from nor-
mal subjects. HDL from diabetic subjects becomes largely 
dysfunctional since it has reduced anti-oxidative activity, 
lower ability to stimulate endothelial cell production of ni-
tric oxide and endothelium-dependent vasomotion, It also 
fails to promote endothelial progenitor cell-mediated endo-
thelial repair. In addition, HDL from diabetic patients pro-
motes endothelial cell proliferation, migration and adhesion 
to the matrix [15]. Finally, deregulation of the cellular trans-
port of cholesterol that accompanies endothelial dysfunc-
tion in T2D, affects the reverse cholesterol transport.

RCT is a multi-step process resulting in the net movement 
of cholesterol from peripheral tissues back to the liver via the 
plasma. This process is regulated by miRNA particles that 
control expression of most of the genes associated with HDL 
metabolism, including genes encoding the ATP transport-
ers, ABCA1 and ABCG1, and the scavenger receptor SRB1 
[16]. RCT is thought to be one of the primary pathways that 
protect against atherosclerosis, which is the major cause of 
cardiovascular diseases and the leading cause of death in 
industrialized countries. The first and rate-limiting step of 
RCT is ATP-binding cassette transporter A1 (ABCA1) and 
ABCG1-mediated cholesterol efflux from the cells. Recently, 
caveolin-1, a scaffolding protein that organizes and concen-
trates certain signaling molecules and receptors within cav-
eolae membranes, has been shown to regulate ABCA1 and 
ABCG1-mediated cholesterol efflux probably via interact-
ing with the transporters [17,18]. Phosphatidylcholine-spe-
cific phospholipase C (PC-PLC) is a key factor in apoptosis 
and autophagy of vascular endothelial cells. It is involved 
in atherosclerosis in apolipoprotein E-/- (apoE-/-) mice. 
Among important regulatory factors of cholesterol metabo-
lism is also a member of the annexin family of proteins that 
possesses GTPase activity, namely AnxA7 [19].

ANNEXINS AND ENDOTHELIUM

Annexins belong to a family of membrane interacting pro-
teins, widely distributed in vertebrates [20-24]. Their involve-
ment in the endosomal transport is due to the ability of an-
nexins to bind cellular constituents such as membrane phos-
pholipids and intracellular proteins in a calcium dependent 
manner. Furthermore, annexins, through endosomal transport 
of certain receptors and specific cargo, may regulate various 
processes involved in signal transduction. After activation by 
a signaling molecule cell surface receptors are internalized by 
endocytosis and transduce the signal further downstream. The 
most optimal conditions for signal transduction are provided 
by compartment specific membrane platforms carrying appro-
priate/specialized signal transducing complexes. Examples 
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are the late endosomal platforms containing EGFR and annex-
ins A1 (AnxA1), A2 (AnxA2), A6 and A8 (AnxA8) [25-29].

Annexins, due to their specialized structure and specific 
localization in the cell, may modulate signal transduction 
either directly, by interacting with EGF receptor (EGFR), or 
indirectly by interacting with EGF pathway regulators and 
effectors, or by participating in the formation and stabiliza-
tion of cholesterol enriched signal transduction platforms or 
by participating in EGFR transport and degradation [30-36].

Recently, it has been shown that redox-sensitive endothelial 
dysfunction, early ischemia/reperfusion, and localized coagu-
lation accompanying transplantation of islets are characterized 
by the release of microparticles (plasma membrane procoag-
ulant vesicles, surrogate markers of stress and cellular effec-
tors) from endothelium in which EPCR/PAR-1 and ANXA1/
FPR2-dependent pathways are involved. Furthermore, these 
pathways are suggested to be involved in preventing insulin 
release from islets in response to glucose upon stress [37]. A 
novel anti-inflammatory mechanism of high density lipo-
protein action through up-regulation of AnxA1 has been de-
scribed in vascular endothelial cells. High density lipoproteins 
increased endothelial AnxA1 and prevented a decrease in 
AnxA1 in TNF-α-activated endothelial cells in vitro. HDL-in-
duced AnxA1 inhibited cell surface VCAM-1, ICAM-1 and 
E-selectin, and secretion of MCP-1, IL-8, VCAM-1 and E-selec-
tin, thereby inhibiting monocyte adhesion to endothelium [38]. 
Leukocyte recruitment to activated endothelial cells via cell 
surface delivery of CD63 was described to be regulated also by 
AnxA8 [39]. The expression of AnxA1 in vascular endothelium 
was affected by oxidative stress [40].

Stressful conditions, such as mechanical stress, may also 
evoke endothelium dysfunction in which Ca2+-dependent 
plasma membrane repair mechanism is switched on [41,42]. 
This mechanism involves annexin A2 (AnxA2) as well as 
AnxA1 and AnxA6 which are rapidly recruited to the sites 
of plasma membrane injury in endothelial cells [43].

Another interesting mechanism related to survival of hu-
man umbilical vein endothelial cells (HUVECs) was solved 
by Ma et al. [44]. The authors have shown that expression of 
Homeobox containing 1 (HMBOX1), which is essential for 
the survival of HUVECs, depends on the GTPase activity 
of annexin A7 (AnxA7). When this activity was inhibited 
by 6-amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine 
this promoted HMBOX1 translation by increased expres-
sion of TGFB2 overlapping transcript 1 (TGFB2-OT1) and as 
a consequence expression of La-related protein 1 (LARP1) 
[44]. AnxA7 was found to be also involved in in regulat-
ing vascular endothelial cell autophagy by interaction with 
T-cell intracellular antigen-1 (TIA1) [45].

ANNEXINS AND CHOLESTEROL

ANNEXINS AND THE VESICULAR 
TRANSPORT OF CHOLESTEROL

Observations briefly reviewed in the former paragraphs 
strongly suggest that annexins may affect distribution and 
activity of various important signaling proteins in a calci-
um- and cholesterol-dependent manner [46-51].

Cholesterol regulates association of several important 
signal transduction molecules, including SNAP receptors 
(t-SNAREs), with the plasma membrane. It has been recent-
ly demonstrated that high levels of AnxA6 induce accumu-
lation of cholesterol in late endosomes, thereby reducing 
cholesterol in the Golgi and plasma membrane. This leads to 
an impaired supply of cholesterol needed for cytosolic phos-
pholipase A2 (cPLA2) to drive Golgi vesiculation and cave-
olin transport to the cell surface. By using AnxA6-overex-
pressing cells as a model for cellular cholesterol imbalance, 
the investigators observed impaired cholesterol egress from 
late endosomes and diminution of Golgi cholesterol, which 
correlated with the sequestration of t-SNAREs. Similar phe-
nomenon was observed when accumulation of cholester-
ol in late endosomes and inhibition of cPLA2 were evoked 
pharmacologically. Ectopic expression of Niemann-Pick 
C1 (NPC1) or exogenous cholesterol restored the location 
of t-SNAREs within the plasma membrane. In conclusion, 
it has been stated that AnxA6-mediated mislocalization of 
t-SNAREs correlates with reduced secretion of cargo via the 
t-SNAREs-dependent constitutive exocytic pathway [52]. 
Inhibition of cholesterol export from late endosomes causes 
cellular cholesterol imbalance, including cholesterol deple-
tion in the trans-Golgi network (TGN) [53].

It has been shown that AnxA6 may affect influenza A 
virus life cycle by shifting cellular cholesterol pools in a 
Ca2+-dependent manner. Elevated levels of cellular AnxA6, 
which decrease plasma membrane and increase late endoso-
mal cholesterol levels, resulted in impairment of virus repli-
cation and propagation, whereas RNA interference-mediat-
ed AnxA6 ablation increased viral progeny titers. Pharma-
cological accumulation of late endosomal cholesterol also 
diminished virus propagation. Decreased virus replication 
caused by upregulated AnxA6 expression could be restored 
either by exogenous replenishment of host cell cholesterol 
or by ectopic expression of the late endosomal cholesterol 
transporter Niemann-Pick C1 (NPC1) [54].

It has been also reported that loss of AnxA8 in human 
umbilical vein endothelial cells strongly decreased cell sur-
face presentation of CD63 and P-selectin, with a concomi-
tant reduction in leukocyte rolling and adhesion [39].

CHOLESTEROL REGULATES ANNEXIN 
DISTRIBUTION AND FUNCTION IN THE CELL

Lipid rafts, cholesterol-enriched membrane microdomains, 
may play a role as platforms for signal transduction and meta-
bolic pathways in T2D [30,33,34]. Many members of the an-
nexin family have been localized in membrane microdomains 
resembling rafts [30]. This was observed for AnxA2 and its het-
erotetramer with the S100A10 protein (AnxA22S100A102) [55-
57]; the latter is most probably implicated in microdomain-sup-
ported exocytosis of neurotransmitters and promotes the later-
al association of glycosphingolipid- and cholesterol-enriched 
lipid microdomains into larger assemblies. The association of 
AnxA2 with lipid rafts was found to be influenced not only by 
intracellular [Ca2+] but also by N-terminal phosphorylation at 
Tyr23 residue. In addition it has been observed that the bind-
ing of AnxA2 to the lipid rafts is followed by the transport of 
proteins along the endocytic pathway [33,58].
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The cholesterol-enriched microdomains described above 
may serve as platforms for spatial and temporal organiza-
tion of signal transduction pathways, creating a link be-
tween different extracellular stimuli and distinct cellular 
responses. A classic example are the multiple signaling 
pathways activated by protein kinase C (PKC) isoforms. It 
has been reported that several annexins, including AnxA1, 
AnxA2, AnxA5 and AnxA6, display specific and distinct 
abilities to interact and promote membrane targeting of dif-
ferent PKC isozymes. Together with the ability of annexins 
to create specific membrane microenvironments, this is like-
ly to enable PKCs to phosphorylate certain substrates and 
regulate their downstream effector pathways at specific cel-
lular sites [58].

Among the isoforms of PKC, PKCα can phosphorylate 
EGFR at threonine 654 (Thr654) to inhibit EGFR tyrosine 
phosphorylation (pY-EGFR) and the associated activation 
of downstream effectors. It has been shown that ectopic ex-
pression of AnxA6 strongly reduces pY-EGFR levels while 
augmenting Thr654 phosphorylation in EGFR-epidermal 
(A431), head and neck and breast cancer cell lines. Reduced 
EGFR activation in AnxA6 expressing A431 cells is associ-
ated with reduced EGFR internalization and degradation. 
This strongly suggests that annexins are implicated in the 
vesicular transport and various signal transducing path-
ways [27,59].

It must be stressed that cell signaling and endocytosis 
are intimately linked in eukaryotic cells [60]. Furthermore, 
the endocytic compartment is thought to be a functional 
platform for controlling important cellular processes [61]. 
Signaling receptors at the cell surface enter the endocytic 
pathway and continue to activate downstream effectors in 
endosomal compartments. Members of the annexin protein 
family, in particular AnxA1, AnxA2, and AnxA6, appear to 
target their interaction partners to specific membrane mi-
crodomains thereby contributing to the formation of com-
partment-specific signaling platforms along the endocytic 
pathway [62].

CONCLUDING REMARKS

Experimental evidence along with the analysis of prima-
ry structures favors the idea that some annexins, especially 
AnxA2, AnxA6 and AnxA13 resemble genuine cholester-
ol-interacting proteins, and that intracellular localization 
and membrane binding of annexins at low pH is determined 
by cholesterol [32,63,64]. Furthermore, experimental data 
suggest that certain functions of annexins may be regulated 
by cholesterol and, last but not least, that annexins may par-
ticipate in cholesterol traffic and storage. Factors were iden-
tified that play a role in regulation of annexin-membrane 
interactions, including calcium, pH and membrane lipid 
composition. A growing number of evidence, coming most-
ly from in vitro experiments, suggests that cholesterol may 
affect the affinity constants of annexins binding to artificial 
lipid membranes such as liposomes of various chemical 
composition or solid supported lipid membranes. Sequence 
alignment of different human annexins revealed domains 

that are most probably crucial for the annexin-membrane 
binding [30].

The results of preliminary in vitro experiments performed 
in our Laboratory have revealed that 48 h incubation of the 
endothelial hybrid cell line EA.hy 926 (established by fusing 
a human umbilical vein endothelial cell with a human carci-
noma cell) with palmitate significantly reduces cell response 
to insulin, as visualized by a lower level of kinase Akt phos-
phorylation (dr Dorota Dymkowska, Nencki Institute of 
Experimental Biology, Warsaw, personal communication). 
Furthermore, preliminary results shown in figure 2 [65-67] 

suggest that palmitate treatment alters the expression of an-
nexin encoding genes in human epithelial EA.hy926. It is 
worth to remember that palmitate was recently reported to 
increase inflammation and enhance the ability of epitheli-
al cells to bind monocytes in vitro, therefore, it could be an 
important factor influencing cardiovascular health [68]. On 
the basis of our preliminary results and the aforementioned 
literature data we hypothesize that palmitate-induced in-
sulin resistance of vascular endothelium may affect annex-
in-dependent cholesterol metabolism and finally accelerate 
endothelial cell injury.
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STRESZCZENIE
Zaburzenia wewnątrzkomórkowego transportu, rozmieszczenia i magazynowania cholesterolu, towarzyszą rozwojowi insulinooporności i 
cukrzycy typu 2, a także innych chorób cywilizacyjnych, takich jak otyłość, miażdżyca i choroby wątroby. Cukrzyca typu 2 jest chorobą me-
taboliczną, dla której charakterystyczna jest hiperglikemia (przecukrzenie), co jest związane z rozwojem insulinooporności i zaburzeniami 
zawartości insuliny. Stanowi 90% wszystkich przypadków cukrzycy. Rozwijane jest szereg strategii terapeutycznych w celu leczenia choroby 
i towarzyszącego jej nieprawidłowego funkcjonowania śródbłonka naczyń krwionośnych, ale żadna z nich nie jest w pełni satysfakcjonująca. 
Zgromadzone dane doświadczalne dotyczące aneksyn jako białek wiążących cholesterol i uczestniczących w transporcie i gromadzeniu tego 
lipidu oraz w organizacji błony plazmatycznej, wydają ię wskazywać na udział tych białek także w rozwoju i utrzymywaniu cukrzycy typu 2. 
Rozważa się również możliwość zastosowania aneksyn w przyszłości stosowane jako znaczników cukrzycy typu 2.
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