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The double-stranded microRNA precursor

ABSTRACT

MicroRNAs (miRNAs) are generated from stem-loop-structured double-stranded RNA 
precursors by the consecutive action of the two RNase III-type endoribonucleases Dro-

sha and Dicer. However, such structures are very common on cellular transcripts and specific 
features have evolved that guide and regulate processing of stem-loop-structured hairpins 
into mature and functional miRNAs. These features include sequence motifs and local RNA 
structures but also trans-acting factors such as RNA binding proteins. The menu of features 
required for miRNA biogenesis is summarized in this review.

INTRODUCTION

Small RNA-guided post-transcriptional gene silencing pathways are found 
in all eukaryotes and play important roles raging from regulating endogenous 
physiological processes to genome stability and cellular defense strategies [1]. 
One particular pathway is guided by microRNAs (miRNAs) that repress specific 
target genes through RNA-RNA pairing [2]. MiRNAs are found in all eukary-
otes except of the model yeast Saccharomyces cerevisiae, which specifically lost 
this pathway [3]. A hallmark of miRNAs is their generation from double strand-
ed (ds) RNA precursors through the action of specialized ribonucleases of the 
RNase III family [4].

miRNAs are single stranded and typically 18-24 nucleotides (nt) long. They 
associate with members of the Argonaute protein family and guide them to com-
plementary target RNAs [5]. In mammals, such target sites are often located in 
the 3’ untranslated region (3’ UTR) of mRNAs and miRNAs are only partially 
complementary to their target sites [6]. Most importantly, nts 2-7 are fully com-
plementary and serves as the ‘seed sequence’ important for target site recogni-
tion and binding [2]. The remaining part of the miRNA contributes to pairing 
with the target but is not essential. The bound Argonaute protein then induces 
deadenylation, decapping and mRNA decay through the interaction with ad-
ditional proteins mainly members of the GW protein family (refer to as TNRC6 
proteins in mammals) [7-10] Some Argonaute proteins are endoribonucleases 
themselves and in case the bound miRNA is fully complementary to the target 
(rare in animals but very common in plants), the target RNA is endonucleolyti-
cally cleaved [11,12].

The targeting rules of miRNAs highlight the importance of the correct se-
quence of the miRNA. Since miRNAs are processed from dsRNA precursors, 
accurate and highly regulated processing is essential for proper targeting of the 
correct target sequences. For example, shifting the processing position within the 
precursor miRNA by only one nucleotide, the seed sequence would be different 
and an entire new spectrum of RNAs might be targeted while binding to regu-
lar targets might be lost. To achieve accuracy, miRNA precursors have evolved 
specific sequence and structural features that position the processing enzymes at 
the correct place. Our current knowledge about these features are summarized 
in this review.

PRIMARY miRNA FEATURES GUIDING PROCESSING 
BY THE MICROPROCESSOR COMPLEX

MiRNAs are transcribed from specific miRNA genes, which can be mono- or 
poly-cistronic (referred to as miRNA clusters) [2]. The majority of miRNAs are 
transcribed by RNA polymerase II, which leads to capping and polyadenyla-
tion since these processes are essential for transcription elongation and termi-
nation [13]. Thus, a nuclear miRNA precursor, immediately after transcription 
(also known as primary miRNA transcript or pri-miRNA), is characterized by 
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a stem-loop structure formed by a 70–90 nt long sequence 
containing an approximately 10 nt loop (Fig. 1A). In mam-
mals, the stem is approximately 35 nt long and flanked by 
a single stranded 5’ extension carrying the cap and a single 
stranded 3’ part that ends with the poly(A) tail [14]. These 
extensions are removed by a first processing step by a 
protein complex composed of two molecules of DiGeorge 
critical region 8 (DGCR8) and one molecule of the RNase 
III-enzyme Drosha known as the microprocessor complex 
[14-18].

Such hairpins may form at many positions of the tran-
scriptome but primary miRNAs are nevertheless highly 
specifically recognized. This is due to the nature of dsRNA 
primary miRNA molecules. They evolved a number of fea-
tures that guide the microprocessor.

The 5’ flanking region ends with a short UG motif that 
is recognized by Drosha [19]. The stem is followed by a 
short highly complementary dsRNA to form the lower 
basal stem (Fig. 1A). The stem is followed by a bulged 
GHG motif, which is also important for Drosha cleavage. 
Drosha contains two RNase III domains and cleaves the 
stem on both strands (Fig. 1A, indicated as red arrow 
heads). The positioning of Drosha leaves two nt 3’ over-
hangs, which is a prerequisite for further downstream 
processing [20]. A rather important feature is found 
right above the two cleavage sites. The double stranded 
nature of this region determines cleavage efficiency and 
therefore mismatches or even weak interactions are often 
depleted from this particular region [21-23]. The upper 
end of the stem is also highly complementary and rarely 
mismatched. The stem is followed by a single stranded 
loop region of about 10 nt in length that contains a GUGU 
sequence motif that recruits and positions DGCR8 [24]. 
DGRC8 itself forms a dimer and helps to correctly posi-
tion Drosha on the primary miRNA [25]. Downstream of 
the stem on the single stranded 3’ extension, a conserved 
sequence motif is found [19]. This CNNC motif serves as 
binding site for the SR protein SRSF3, which acts broadly 
and binds to most canonical primary miRNAs [22].

Not all primary miRNAs contain all features mentioned 
above. Nevertheless, the more of these sequence elements 
and dsRNA features are present, the better the hairpin is 
cleaved. Large scale mapping of cleavage events, however, 
also found various atypical cleavage events including 5’ and 
3’ nicks of the double stranded stem or even inverse pro-
cessing, i.e. binding of the microprocessor to the primary 
transcript in flipped orientation [26]. Such atypical process-
ing might occur when specific features are missing. A recent 
study revealed a Drosha dsRNA recognition site (DRES) on 
various stem-loop-structured RNAs, which lack other fea-
tures (Fig. 1A). DRES can guide the microprocessor to such 
sites leading to the generation of non-canonical miRNA pro-
cessing [27].

The evolution of the features highlighted above demon-
strates that the generation of mature canonical miRNAs is 
tightly regulated and pervasive processing of hairpin struc-
tures that spontaneously form on many transcripts, is pre-
vented. In vitro processing and mapping experiments sug-

gest that approximately 1000 human primary miRNAs are 
efficiently processed [26]. Some non-canonical processing 
is likely tolerated to allow for plasticity of miRNA-guided 
gene silencing during changing environmental conditions 
and the evolution of novel miRNA-guided regulatory cir-
cuits.

Many miRNAs are organized in clusters and transcribed 
together as long primary transcript [28]. Interestingly, sev-
eral miRNAs are rather efficiently processed although their 
double stranded precursors are sub-optimal. This is partic-
ularly true for miR-451, which forms a rather short hairpin 
and is independent of Dicer processing [29-31]. It was found 
that neighboring optimal miRNA hairpins can support mi-
croprocessor cleavage in a process termed ‘cluster assisted 
miRNA processing’ [32,33]. This phenomenon is observed 
for a number of primary miRNAs including viral miRNAs 
[34,35]. Mechanistically, the two proteins SAFB2 and ERH 
interact with the microprocessor and bridge two clustered 
miRNAs [36,37]. This leads to efficient processing of a 
sub-optimal substrate within a miRNA cluster.

Taken together, these few examples highlight the impor-
tance of the double-stranded nature of the primary miRNA 
with its specific sequence features and genomic organiza-
tion, which are prerequisites and determinants of efficient 
miRNA generation in many different organisms.

Figure 1. Structure and sequence features of double stranded miRNA precursors. 
(A) Primary miRNA transcripts (pri-miRNAs) contain various structural featu-
res as well as contact points for the microprocessor (Drosha, DGCR8) and the 
RNA binding protein SRSF3. In the absence of most indicated features a Drosha 
doubl- stranded RNA recognition site (DRES) can recruit the microprocessor for 
processing. Drosha cleavage sites are indicated by red arrowheads. (B) The micro-
processor product miRNA precursors (pre-miRNA) serves as substrate for Dicer. 
Dicer requires the 2 nts 3’ overhang produced by Drosha but does not further rely 
on specific sequence or structure motifs. A GYM motif, however, enhances Dicer 
processing. Dicer cleavage sites are indicated with red arrowheads.
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DOUBLE-STRANDED miRNA PRECURSORS IN 
THE CYTOPLASM: PROCESSING BY DICER

Cleavage by the microprocessor generates a specific basal 
end of the miRNA precursor (also referred to as pre-miRNA) 
characterized by a 5’ phosphate and a two nt 3’ overhang 
(Fig. 1B). This end is specifically recognized by the export 
receptor Exportin5 [38-40] and both features are required 
for the second cleavage step facilitated by the cytoplasmic 
RNase III enzyme Dicer [41,42]. Dicer is a highly conserved 
multi-domain enzyme. Similarly to Drosha, it contains two 
RNase III domains that cleave the double-stranded stem of 
the pre-miRNA hairpin. Therefore, while Drosha defines 
one end of the mature miRNA, Dicer produces the second 
one. Dicer anchors the 5’ and the 3’ ends of the hairpin in 
specific pockets located within specific domains referred to 
as the PAZ and platform domains [43]. In subsequent steps, 
the hairpin is loaded into the catalytic site and both strands 
are cleaved leaving a short double stranded RNA that con-
tains the mature miRNA and the opposing strand initially 
referred to as the miRNA star strand. It is now commonly 
accepted that the two sequences are termed miRNA-5p and 
miRNA-3p reflecting the position of the mature miRNA on 
the stem of the pre-miRNA. Both strands can become the 
mature miRNA (Dicer mechanisms and structural features 
are reviewed in [43,44]).

While the recognition of primary transcripts by the mi-
croprocessor requires a number of different RNA structure 
and sequence features (see above), Dicer processes Drosha 
products without further selection. MiRNA definition and 
selection is therefore carried out by Drosha and channeling 
into the pathway does not require further selection and rec-
ognition at later stages. Nevertheless, a recent study identi-
fied a short sequence motif located at the apical cleavage site 
of the 3’ arm of the pre-miRNA stem. Based on the sequence 
context, it was termed GYM (a paired G, a paired pyrimi-
dine and a mismatched C or A) motif (Fig. 1B) [45,46]. This 
motif directly interacts with Dicer and increases cleavage 
efficiency at this particular position.

Besides cleavage of the pre-miRNA hairpin at the two 
positions (indicated with red arrow heads in Fig. 1B), Di-
cer carries out a second very important function: it initiates 
strand selection and the transfer of the mature strand to an 
Argonaute protein, a process commonly referred to as RISC 
or Argonaute loading [47-50]. The two strands are not ran-
domly selected and loaded. Instead, the strand with the less 
stably paired 5’ end becomes the mature miRNA and Dicer 
may contribute to this asymmetric strand selection process 
[51,52]. Furthermore, Dicer interacts with a dsRNA binding 
protein partner (e.g. Loqs or R2D2 in flies and TRBP in hu-
man). Particularly in Drosophila, a role during asymmetry 
sensing has been assigned to R2D2 [53]. The detailed mo-
lecular mechanisms however, still remain rather enigmatic.

REGULATION OF THE DOUBLE STRANDED 
miRNA PRECURSOR BY RBPS

Besides SRSF3, which binds the 3’ flanking region of 
most primary miRNAs, RBPs that sequence-specifically 
bind and regulate miRNA processing of individual primary 

miRNAs, have been reported (summarized in [54]). Large-
scale biochemical as well and cellular screening approaches 
discovered many RBPs with affinity to primary miRNAs 
[54,55]. A well-characterized member of this group of RBPs 
is LIN28 [56-60]. In human cells, LIN28 expresses two pro-
tein variants – LIN28A and LIN28B. LIN28A is cytoplasmic 
and interacts with two motifs located at the apical loop and 
stem within miRNA precursors of the let-7 miRNA family.  
LIN28A is expressed in stem cells and recruits the terminal 
uridyltransferases TUT4 and TUT7, which oligo-uridylate 
the double stranded pre-let-7 miRNAs at their 3’ ends [61-
63]. This modification prevents Dicer recruitment and in-
stead attracts the 3’ to 5’ exoribonuclease DIS3L2, which 
rapidly degrades the precursor. LIN28B appears to be ex-
pressed in a broader panel of cell types and localizes to the 
nucleus, where it binds to primary let-7 transcripts. Howev-
er, the proposed inhibitory mechanism appears to be differ-
ent. LIN28B sequesters the dsRNA substrate into nucleoli 
and thus prevents export into the cytoplasm [64].

Some pre-miRNAs receive only a 1 nt 3’ overhang from 
the nuclear microprocessor due to structural constraints. 
Such pre-miRNAs are only poor Dicer substrates. They are 
nevertheless efficiently processed because TUT2, TUT4 and 
TUT7 can bind to these pre-miRNAs and add a single U 
to their 3’ ends generating a 2 nt 3‘ overhang that can be 
efficiently processed by Dicer [65]. Moreover, such an ad-
dition can also lead to a miRNA arm switch and directly 
affects miRNA strand selection. This has been reported for 
pre-miR-324 and a role in glioblastoma pathology has been 
suggested [66].

RNA polymerase III (pol III) generates non-coding RNAs 
of medium length including pre-tRNAs, the 5S rRNA and 
many other functional RNAs [67]. All these ncRNAs are 
highly structured which is important for their specific func-
tions. However, not all of these RNAs can fold spontaneous-
ly. Instead, they require help of RNA chaperones. The RBP 
and Lupus autoantigen La is one of the first described RNA 
chaperones that associates with the 3’ end of pol III tran-
scripts and helps folding them into the correct structure 
[68,69]. However, some pre-tRNAs can adopt alternative 
structures in the absence of La leading to extended hairpin 
structures. Interestingly, these alternative structures can be 
channeled into the miRNA pathway and are exported and 
efficiently processed by Dicer [70]. This highlights the im-
portance of the correct structure not only of miRNA precur-
sors but non-coding RNAs in general.

PERSPECTIVES

Not all mature miRNAs follow the path through mi-
croprocessor and Dicer maturation. A large number of 
non-canonical miRNA hairpins have been reported includ-
ing microprocessor- or Dicer-independent miRNAs [71]. 
Prominent examples are mirtrons, which are intron-miRNA 
chimeras that are liberated by the splicing machinery and 
directly channeled into Dicer without prior Drosha cleav-
age [72]. Or, miR-451 has a very short double stranded stem 
and cannot be processed by Dicer. Instead it is cleaved by a 
catalytic member of the Argonaute protein family [30,31].



60 https://postepybiochemii.ptbioch.edu.pl/

In addition, short structured RNAs can also form during 
transcriptional initiation and some of these RNAs are trans-
ported to the cytoplasm where they are processed by Dicer 
to mature miRNAs [73,74]. In addition, other sources of ds-
RNAs can be processed by the miRNA processing machin-
ery including small nucleolar RNAs (snoRNAs) or even 
tRNAs [75-77]. Nevertheless, many of these miRNAs do 
not reach high cellular concentrations and thus it remains 
unclear whether processing of such RNAs is a consequence 
of processing plasticity and tolerated noise or whether small 
RNAs have indeed evolved from such bi-functional dsRNA 
precursors. In some cases, both might be true and active 
evolution towards novel functionalities could be observed.

Highlighted are just some of the reported aspects how 
the double-stranded character of an RNA can affect down-
stream processing and fueling them into distinct regulatory 
pathways. RBPs but also RNA modifications [78] can direct-
ly change the biophysical properties of an RNA-RNA helix 
suggesting many more and so far unrecognized ways of in-
fluencing double-stranded RNA processing.
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