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DEDICATION

Dedicated to the memory of Ron Hancock, a 
scientist who was always interested in science 
as such, and not in a scientific career.

The role of physicochemical processes in the formation of  
the 3D genome and compartmentalization of the cell nucleus

ABSTRACT

The review analyzes the role of physicochemical processes in the formation of the func-
tion-dependent architecture of the cell nucleus, built on the platform of a folded genome. 

The main attention is paid to various forms of the phase separation process, primarily the 
processes of liquid-liquid phase separation and polymer-polymer phase separation. The role 
of these processes in the formation of chromatin compartments and maintenance of three-
-dimensional genome architecture is discussed in detail. The relationship between genome 
activity and the creation of functional compartments in the cell nucleus is also analyzed.

INTRODUCTION

Seventy years ago, Watson and Crick proposed the double helix model of 
DNA [1]. Over the next few years, the genetic code was deciphered, and the 
central dogma of molecular biology was formulated, reflecting the transfer of 
information from DNA to RNA and then to proteins [2]. Rapid progress in the 
field of molecular biology has led to the belief that the molecular mechanisms 
underlying life will be quickly disclosed. These hopes did not come true. Quite 
soon it became clear that living matter is much more complex than was imagined 
at the time of the emergence of molecular biology. With the sequencing of the 
human genome [3] and many other genomes, it became clear that in multicellu-
lar organisms, protein-coding sequences occupy only a few percent of the total 
genome size [3-5]. At the same time, it was demonstrated that in addition to 
ribosomal RNAs, there are many other non-coding RNAs that perform various 
functions in the cell, including enzymatic, regulatory, and architectural func-
tions [6]. Already in the 21st century, so-called 3D genomics appeared [7-10]. Of 
course, the genome, like DNA, is linear, or, in some cases, circular. However, in 
the cell nucleus, the genome is packaged in such a way that distant parts of it can 
contact each other. It turned out that spatial contacts between genes and distant 
regulatory elements play an important role in the control of transcription [11]. 
It was this observation that laid the foundation for 3D genomics. The packaging 
and operation of the genome is closely related to the functional compartmen-
talization of the cell nucleus [12]. In fact, the cell nucleus is assembled on the 
platform of a packaged genome and, in a certain sense, can be regarded as the 
exoskeleton of the folded genome [13]. In this review, I will analyze the role of 
simple physicochemical processes in the formation of the 3D genome and com-
partmentalization of the cell nucleus.

Compartmentalization, i.e., the creation of relatively isolated locations charac-
terized by an increased concentration of certain components, is a basic property 
of living cells. The living cell itself and some cellular compartments, such as 
the cell nucleus or mitochondria, are separated from the surrounding space by 
lipid membranes. However, in the cell nucleus there are many functional com-
partments that are not surrounded by membranes [14]. Recent studies indicate 
that most of these compartments arise in connection with one or another activity 
of the genome: transcription, replication, and repair of DNA damage [15-17]. 
The question of how the intranuclear functional compartments, which include 
the nucleolus, speckles, paraspeckles, and the Cajal and promyelocytic leukemia 
protein (PML) bodies, are formed, has long been debatable. At present, convin-
cing evidence has been obtained that the formation of all these compartments is 
provided by simple physicochemical processes, including the process of liquid-
-liquid phases separation and the forces arising under conditions of macromole-
cular crowding [14,18-22]. These processes, however, are modulated by genome 
activity. In this review, we first briefly describe the physicochemical processes 
mentioned above and then consider how they are involved in the compartmen-
talization of the cell nucleus and the formation of the three-dimensional organi-
zation of the genome.
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LIQUID-LIQUID PHASE SEPARATION

Liquid-liquid phase separation (LLPS) occurs when the 
macromolecules present in the solution interact with each 
other better than with the solvent molecules. In this case, 
upon reaching a certain concentration of the dissolved sub-
stance, it is demixed into a separate phase. With further 
addition of this substance to the solution, its concentrations 
in the solution and in the separated phase remain constant, 
while the volume of the separated phase increases. A typi-
cal example of LLPS is the formation of oil droplets in an 
aqueous solution. The process of LLPS is described by a 
phase diagram (Fig. 1). This diagram shows that to initiate 
phase separation, a certain threshold solute concentration 
must be reached, the value of which depends on additional 
conditions, such as temperature [23,24]. The demixing of 
macromolecules into a separate phase is directed by multi-
valent unstable interactions between these macromolecules. 
The nature of the interactions may vary. They can be, for 
example, electrostatic or hydrophobic [25,26]. In biological 
systems, proteins possessing intrinsically disordered doma-
ins (IDRs) are known to form liquid droplets via LLPS [27]. 
Many nuclear proteins possess such IDRs and hence can 
form phase-separated condensates in overcrowded nucle-
ar milieu [28-35]. Partially complementary RNA molecules 
can also form liquid phase condensates [36-38]. Phase con-
densates can be formed by several different macromolecu-
les if they can establish multivalent interactions with each 
other [39-41]. An important characteristic of a liquid phase 
condensate is that the environment inside this condensate 
differs from the solution in which the phase condensate 
was formed. After phase separation, the macromolecules 
present in the solution are distributed between the phases 
in accordance with their ability to interact with the solvent 
and with the macromolecules released into a separate pha-
se. Macromolecules that have passed from solution to the 
phase condensate, but do not participate in its formation, 
are called client molecules [42]. For compartmentalization 
of the cell nucleus, the localization of phase condensates, 
i.e., their formation in certain areas of the cell nucleus, is 
fundamentally important. This is ensured by an increase to 
the threshold value of the local concentration of macromole-
cules capable of separating into a separate phase. As a rule, 
this is achieved by attracting such macromolecules to a cer-
tain platform which may be a protein [43,44], RNA [45,46], 
polyADP-ribose [47], DNA [48,49] or chromatin fibril [48]. 
The liquid phase condensates are expected to possess round 
shape, fuse upon coalescence, and quickly exchange com-
ponents with the external milieu [24,50]. The interacting 
macromolecules gathered in a certain location within the 
cell nucleus are additionally held together by the entropy 
forces that arise under the conditions of macromolecular 
crowding, which will be discussed in the next section. The 
ability of certain proteins to establish contacts leading to the 
formation of phase condensate, can be modulated by post-
-translational modifications [51-53]. Post-translational mo-
difications can also affect the ability of client proteins to be 
retained in the phase condensate [54,55].

It is worth saying that in addition to the most frequently 
discussed LLPS, other phase separation processes are also 
involved in the organization of intranuclear space: liquid-

-gel-phase separation; liquid-solid phase separation and po-
lymer-polymer phase separation [56-58]. The first two of the 
processes mentioned are similar in principle to LLPS. The 
only difference is whether the resulting phase condensate is 
gel-like or solid. Polymer-polymer phase separation (PPPS) 
is the process of physically separating long polymers, each 
of which has a certain number of cross-links between distant 
regions. PPPS leads to the formation of a polymer globule 
(Fig. 2) [56]. A significant difference between such a globule 
and a liquid-phase condensate is that the medium inside the 

Figure 1. Phase diagram. (A) The process of separation of liquid phases is descri-
bed by a phase diagram. As a substance capable of forming a separate phase is ad-
ded to the solution, the concentration of this substance in the solution gradually 
increases (points 1, 2) and reaches a threshold value, after which phase separation 
occurs (points 3–5). The threshold value depends on additional conditions, such 
as temperature, pH, etc. (B) Concentrations of the solute in the solution (blue line) 
and the separated phase (purple line) when the solute is added to the solution. 
Note that after phase separation, further addition of the substance that formed 
the separated phase does not lead to a change in its concentration either in the 
solution or in the separated liquid phase. In this case, the volume of the separated 
phase increases and the volume of the solution decreases accordingly, as shown 
schematically in section C.
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globule does not differ from the surrounding solution [56] 
(Fig. 2).

ENTROPIC FORCES ARISING UNDER CONDITIONS 
OF MACROMOLECULAR CROWDING

Entropic forces (depletion attraction force) arise in con-
ditions of a very high concentration of macromolecules 
(macromolecular crowding), when the opportunity for free 
movement of macromolecules in the solution is limited [59-
61]. Depletion attraction force promotes the association of 
macromolecules into aggregates. Moving solvent molecules 
bombard macromolecules from various directions. Howe-
ver, when macromolecules happen to be nearby, bombard-
ment from the contact surface will be impossible. Accordin-
gly, there will be no forces capable of pushing the macromo-
lecules apart, while the forces that hold them in the complex 

will remain. The formation of the complex also leads to a 
decrease in the space occupied by macromolecules in the 
case when the surfaces of macromolecules have spatial com-
plementarity, which is typical for macromolecules capable 
of dimerization and multimerization. This provides more 
space for the movement of solvent molecules, i.e., it gives a 
gain in entropy (Fig. 3). In the pioneering work of R. Han-
cock, it was demonstrated that the depletion attraction for-
ce plays a significant role in the formation of the nucleolus, 
PML bodies and Cajal bodies. The decrease in the level of 
macromolecular crowding in the nuclei upon placement of 
cells to a hypotonic solution, caused disintegration of these 
compartments. The addition of an inert crowding agent (po-
lyethylene glycol) to the medium ensured the restoration of 
compartments [18,19]. The entropic forces that arise under 
conditions of macromolecular crowding help maintain the 
integrity of various biological structures. It has been shown, 
for example, that ensuring a high level of macromolecular 
crowding makes it possible to isolate compact metaphase 
chromosomes even without the use of high concentrations 
of divalent cations [62].

Depletion-attraction force does not have any specifici-
ty, contributing to the stabilization of any macromolecular 
complexes. Thus, it was shown that entropic forces support 
self-association of polynucleosomal chains [63]. As another 
example, I can mention active chromatin hubs, which are 
disassembled when the level of macromolecular accumu-
lation decreases and reassembled when it increases [64]. 
Obviously, the specificity of the interaction between enhan-
cers and promoters is ensured by other interactions. Ho-
wever, these interactions themselves are quite weak, and 
the complexes assembled through these interactions turn 
out to be stable only under conditions of macromolecular 
crowding. In model experiments, it was shown that a high 
level of macromolecular crowding promotes more stable 
transcription, possibly due to stabilizing the binding of the 
transcription complex to DNA and limiting diffusion [65]. 
The effects of macromolecular crowding on chromatin fol-

Figure 2. Liquid-Liquid Phase Separation (LLPS) and Polymer-Polymer phase se-
paration (PPPS). Note that the medium within a polymer globule does not differ 
from surrounding solution.

Figure 3. Aggregation of large macromolecules (macromolecular complexes) un-
der conditions of macromolecular crowding. Under macromolecular crowding 
conditions, macromolecules (the big red balls) often collide. In this situation, 
solvent molecules (small gray balls) cannot bombard macromolecules from the 
contacting surfaces, which leads to stabilization of macromolecular complexes. 
When macromolecules aggregate, their excluded volumes (orange rings around 
red balls) are partially combined, which gives a gain in entropy.
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ding have been analyzed using computer simulations. The 
results of the simulations suggest that increasing the level 
of macromolecular crowding causes aggregation of nucle-
osome clutches with high nucleosome density but has little 
effect on nucleosome clutches with low nucleosome den-
sity. Based on these results, the authors hypothesized that 
macromolecular crowding contributes to the formation of 
compact heterochromatin [66].

THE ROLE OF LIQUID-LIQUID PHASE SEPARATION 
IN THE ASSEMBLY OF INTRANUCLEAR 
COMPARTMENTS – NUCLEAR BODIES

The role of LLPS in the assembly of the so-called nuc-
lear bodies, such as nucleolus, nuclear speckles, Cajal bo-
dies, PML bodies et cetera is well documented and has been 
extensively reviewed [21,22,67,68]. Many nuclear bodies 
possess expected characteristics of phase-separated conden-
sates [69]. They have spherical shape, are not surrounded by 
membranes, and are composed of proteins that are quickly 
exchanged with a nucleoplasmic pull. The sets of proteins 
present in various nuclear bodies can partially overlap but 
still are specific [70]. This specificity is imposed by nucle-
ation of liquid condensate assembly at a specific interaction 
platform which may be non-coding RNA as in paraspeckles 
[71] or protein as in PML-bodies [72]. At the same time, not 
all nuclear bodies have a spherical shape typical of classical 
phase condensates. The shape of nuclear bodies is largely 
determined by the features of the platform on which they are 
assembled. Thus, in the case of paraspeckles, NEAT1_2 RNA 
forms copolymers with RNA-binding proteins, followed by 

the assembly of micelles, which, depending on additional 
conditions, can have different shapes: spherical, cylindrical, 
lamellar, and vesicular [73,74]. Microphase separation plays 
an important role in the formation of some nuclear compart-
ments. [75,76]. Many nuclear compartments are scaffolded 
by non-coding RNAs [16,73,77]. These RNAs contain bin-
ding sites for various proteins, including proteins capable 
of establishing multivalent interactions. In a crowded nuc-
lear environment, large RNP complexes tend to aggregate, 
resulting in an increase in the concentration of interacting 
proteins above the phase separation threshold value. As a 
result, nuclear bodies assemble near sites of transcription of 
scaffolding RNAs (Fig. 4). Here, the connection between the 
compartmentalization of the cell nucleus and the activity of 
the genome, as well as its packaging in three-dimensional 
space, is easily traced [16). Another type of liquid-phase 
functional compartments arises in the process of DNA da-
mage repair [78-80]. Poly(ADP-ribose) (PAR) [47,81,82] or 
RNA, the synthesis of which is initiated near DNA breaks, 
can scaffold the assembly of such compartments. It has been 
shown that Pol II and other components of the transcriptio-
nal machinery are recruited at DNA break sites, where the 
synthesis of a non-coding RNA called damage-induced long 
non-coding RNA (dilncRNA) is initiated. This RNA scaf-
folds the assembly of liquid condensates containing 53BP 
and other DNA Damage Response proteins [83,84].

A special type of phase condensate is the nucleolus. In 
mammalian cells, the nucleolus is three-component. The 
fibrillar centers (Pol I transcription factories) surrounded 
by a dense fibrillar compartment are immersed into huge 

Figure 4. Assembly of a nuclear body near the site of scaffolding RNA synthesis. (A) RNA-binding proteins, including those capable of multivalent interactions, bind to 
scaffold RNA as soon as it is transcribed. At a low level of macromolecule crowding, RNP complexes diffuse into the nucleoplasm. (B) Under macromolecular crowding 
conditions, diffusion of RNP complexes assembled on scaffold RNA is limited in part by the aggregation of these RNP complexes. As a result, a threshold concentration of 
proteins capable of establishing multivalent interactions is reached, and a liquid-phase condensate is formed.
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granular layer. Fibrillar centers assembled on the scaffold 
provided by multifunctional protein Treacle exhibit typi-
cal properties of phase condensates. However, the nature 
of the forces directing the formation of these condensates 
remains unclear, since they are not destroyed by agents that 
suppress hydrophobic interactions and high ionic strength, 
which weakens electrostatic interactions [85]. Primary 
transcripts are released into a dense fibrillar compartment, 
where they interact with fibrillarin. The latter forms a se-
cond phase condensate [86]. After removal of introns, the 
processed rRNA loses its affinity for fibrillarin and moves 
out of the dense fibrillar compartment, providing now a 
scaffold for the assembly of nucleophosmin phase conden-
sate [86]. As ribosomal particles assemble, nucleophosmin 
is displaced from rRNA and precursor ribosomal subunits 
diffuse into the nucleoplasm. It is easy to see that the nucle-
olus is a nonequilibrium structure that can exist only as long 
as rRNA is synthesized and processed. Indeed, treatment 
of cells with agents that suppress Pol I causes disruption of 
nucleoli [87,88].

In the cell nucleus, various functional compartments are 
located in the interchromatin domain, which serves for the 
transport of various precursors to the places of their utiliza-
tion and export of mature mRNA into cytoplasm. Although 
the existence of this relatively chromatin-free compartment 
was demonstrated quite a long time ago [89-91], the mecha-
nism of its formation is not entirely clear. Now it seems very 
likely that this entire compartment is a phase condensate 
formed on the platform of RNA and RNP particles present 
there [77]. Multi-bromodomain (multi-BRD) proteins asso-
ciated with the perichromatin layer (transcriptionally active 
chromatin), localized at the border of the chromatin and in-
terchromatin domain, may also take part in the formation of 
this phase condensate [92].

THE ROLE OF PHYSICOCHEMICAL PROCESSES 
IN THE FORMATION OF A 3D GENOME

It is well known that interphase chromosomes occupy 
relatively isolated non-overlapping spaces in the nucleus, 
called chromosomal territories [90,93]. Separation of chro-
mosomal territories is achieved by the process of polymer-
-polymer phase separation (PPPS) [94-96]. The parameters 
of chromosomal territories are determined by the presence 
of DNA loops generated by cohesin extrusion complexes 
and other contacts between distant regions of the chromoso-
me. Computer modeling shows that to approach the expe-
rimentally observed parameters of chromosomal territories, 
the size of the loops must be comparable to the sizes of to-
pologically associated domains (TADs) [97]. The organiza-
tion of the cell nucleus can be modeled quite well by adding 
contacts of active chromosome regions with speckles and 
inactive ones – with nuclear lamina [98].

In recent years, the role of LLPS in the compartmentaliza-
tion of chromatin, i.e. in the spatial segregation of active and 
inactive chromatin, has been actively discussed [99-102]. 
The presence of such segregation is evidenced by the analy-
sis of Hi-C maps, demonstrating that within the chromoso-
mal territory, active genome segments preferentially contact 
each other. The same can be said about inactive segments. 

But spatial contacts between active and inactive genome 
segments occur much less frequently. These observations 
were formalized in terms of the spatial segregation of active 
(A) and inactive (B) chromatin compartments [103]. Analy-
sis of high-resolution Hi-C maps made it possible to identi-
fy several sub-compartments in each of these compartments 
[104]. It is obvious that certain forces must exist in the cell 
nucleus that promote the establishment of preferential con-
tacts between chromatin segments that carry similar spec-
tra of epigenetic marks. According to one of the models, 
the process of formation of phase condensates can play an 
important role here [56,101,102,105,106]. It has been experi-
mentally shown that the architectural proteins involved in 
the formation of constitutive and facultative heterochroma-
tin (HP1, H1, MeCP2, CBX) contain unstructured domains 
and, under certain concentrations, form liquid-phase con-
densates, both on their own and together with DNA or nuc-
leosomes [30,48,56,107,108]. Oligonucleosomal fragments 
with H1 or without it also can form phase condensates in 
vitro [92,109]. In model experiments, the formation of liqu-
id condensates by various heterochromatin proteins was 
also demonstrated inside the nucleus [30,108]. However, 
analysis of actual pericentromeric chromatin blocks has not 
provided evidence that they are typical liquid-phase con-
densates formed on a platform of densely packed DNA. The 
main characteristic of liquid-phase condensate is that the 
environment inside the condensate is different from the rest 
of the solution. The molecules inside the condensate prefe-
rentially interact with each other, avoiding contact with the 
solvent. However, experiments analyzing the recovery after 
laser beam bleaching of luminescence of HP1 and MeCP2 
conjugated to fluorescent proteins showed that the move-
ment of HP1 and MeCP2 within pricentromeric heterochro-
matin and between heterochromatin and the nucleoplasm 
is equally probable [110]. In addition, the concentration of 
HP1 inside heterochromatic clumps turned out to be signi-
ficantly lower than the threshold required for the formation 
of liquid-phase condensate in vitro [110].

An alternative model suggests that constitutive hetero-
chromatin is formed via polymer-polymer phase separation 
(PPPS) [99,111]. The result of PPPS is the formation of a 
polymer globule [56,112]. A significant difference between 
such a globule and a phase condensate is that the medium 
inside the globule does not differ from the surrounding so-
lution (in the case of a heterochromatic globule, from the 
nucleoplasm (see Fig. 3) [56]. Accordingly, the accessibility 
of DNA in heterochromatin should be regulated by pure-
ly physical restrictions (packing density). Currently, this 
model fits most of the available experimental data. Howe-
ver, the nature of the crosslinks underlying PPPS remains 
unclear. It was experimentally shown that HP1 is required 
for transcriptional repression, but not for maintaining the 
compact organization of pericentromeric heterochromatin. 
Pericentromeric heterochromatin maintains a compact or-
ganization in mice with knockouts of various forms of HP1 
[113]. In addition, delocalization of HP1 from pericentric he-
terochromatin does not lead to its decompaction [114,115]. 
Finally, partial exclusion of inert proteins from chromocen-
ters does not depend on the presence of HP1 [110]. MeCP2 
(in organisms with CpG methylation) seem to be more im-
portant for maintaining this compact organization of peri-
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centric heterochromatin [116-118]. Also, certain proteins 
that bind to satellite DNA may participate in the formation 
of crosslinks [116]. The blocks of constitutive heterochroma-
tin in the chromosome arms (constitutive heterochromatin 
that ensures the inactivation of transposons) are quite small, 
which is why modern methods do not allow us to directly 
analyze the question of whether they are liquid phase con-
densates. As for facultative heterochromatin, several results 
indicate that chromatin segments inactivated by Polycomb 
complexes are phase condensates [33,119]. In agreement 
with this, treatment of cells with 2,6-hexanediol, an agent 
that destroys liquid-phase condensates, leads to the disinte-
gration of Polycomb bodies [120].

It is worth noting that distinguishing between LLPS and 
PPPS is not always easy. In the classic version, PPPS brid-
ging factor molecules should not interact between themse-
lves. The establishment of cross-links between distant re-
gions of the polymer is sufficient to initiate PPPS. However, 
HP1a molecules can act as a bridging factor and simultane-
ously interact with each other, forming phase condensates. 
Accordingly, both PPPS and LLPS may contribute to the 
formation of constitutive heterochromatin. Another note-
worthy detail is that the chromatin fibril is a block copoly-
mer consisting of alternating regions of active and inactive 
chromatin. Such copolymers display microphase separa-
tion, rather than macrophase separation [121]. Accordingly, 
one cannot expect that heterochromatin clusters will have 
the spherical shape characteristic of classical liquid phase 
condensates [122]. Theoretical analysis shows that the for-
mation of phase condensates by HP1a molecules on a chro-
matin platform containing H3me2/3 will strongly depend 
on the genomic distribution of modified histones and the 
result of this process will be the formation of multiple long-
-lived microcondensates [122].

For some time, it was believed that repressed chromatin 
tends to stick together, while active chromatin occupies a 
volume free of heterochromatin, due to which preferential 
contacts are realized also within the active chromatin com-
partment. It is now obvious that contacts within the acti-
ve chromatin compartment are established through special 
mechanisms. Here we can mention the attraction of active 
genes to speckles and common transcription factories [123-
129]. In some cases, it has been directly shown that the pro-
cess of liquid phase separation plays an important role in 
establishing contacts between active genes. Thus, in yeast 
cells under heat shock conditions, liquid condensates conta-
ining Pol II, mediator, and heat shock factor 1 (Hsf1) are for-
med. These condensates attract genes activated by the HSF1 
factor, including genes located on different chromosomes 
[130]. The formation of such condensates is regulated by 
phosphorylation of HSF1. HSP70 initiates the dissociation 
of HSF1 condensates after returning to normal yeast cultiva-
tion conditions [131]. If we talk about transcription factories 
in the cells of multicellular organisms [132-134], then in this 
case too there is good reason to believe that they are formed 
through a process of liquid phase separation [28,135-137].

In the cell nucleus, euchromatin is located on the surface 
of 1 Mb chromatin globules, being exposed in the interchro-
matin domain [138-140]. Active chromatin is characterized 

by a high level of H3K27 and H3K9 acetylation. These mo-
difications attract proteins containing bromodomain, inc-
luding BRD4, the short isoform of which forms phase con-
densates [141]. Active chromatin exposed on the surface of 
chromatin globules can also participate in the formation of 
mixed phase condensates with RNA and RNA-binding pro-
teins filling the interchromatin domain [77].

The role of liquid phase separation in transcriptional re-
gulation is best documented. It has been demonstrated that 
activator compartments, which include RNA polymerase 
II, Mediator, histone acetylase P300, various transcription 
factors and other components of the transcription appa-
ratus, are formed on enhancers and promoters by LLPS 
[28,49,142,143]. For some transcription factors it was de-
monstrated that activation of transcription by these factors 
is directly related to their ability to form liquid phase con-
densates which attract RNA polymerase II, Mediator and 
other components of transcription apparatus [144]. Enhan-
cer RNA can serve as a platform for the formation of phase 
condensates on active enhancers [77,145-147]. The fusion 
of phase condensates assembled at enhancers and promo-
ters keeps promoters and enhancers, as well as individual 
blocks of superenhancers, close to each other, which plays 
an important role in the formation of function-dependent 
spatial organization of the genome [142,148-150]. Treat-
ment of cells with an agent that destroys phase condensates 
leads to the loss or weakening of a significant number of 
enhancer-promoter loops [151]. The importance of phase 
condensates in the organization of transcription is not limi-
ted to the creation of activator compartments at enhancers 
and the establishment of communication between enhan-
cers and promoters. Recent observations suggest that di-
stinct liquid condensates are formed at gene bodies in the 
course of transcription [54,152]. Assembly of these conden-
sates is likely scaffolded by nascent RNA which interacts 
with various proteins, including the splicing machinery 
components [54]. Of note, release of Pol II from activating 
compartment assembled on promoter is regulated by pho-
sphorylation of C-terminal domain of Pol II large subunit 
(CTD) [54,55,136,153]. Hypophosphorylated Pol II CTD is 
retained in mediator condensates whereas hyperphospho-
rylated CTD is preferentially incorporated into condensates 
that are formed by splicing factors [54]. Phosphorylation of 
Pol II CTD is mediated by the kinase CDK9 which is a sub-
unit of positive transcription elongation factor b (P-TEFb) 
[154]. Active form of P-TEFb constitutes a part of a super 
elongation complex (SEC) [155, 156] which, under certain 
conditions, is also recruited to heterotypic phase-separated 
complex with ELL and AFF4 [157].

CONCLUDING REMARKS AND PERSPECTIVES

Understanding the role of LLPS in the organization of 
various processes in the cell nucleus allows us to take a new 
approach to answering long-debated questions. These in-
clude the question of why Xist RNA does not diffuse into 
the nucleoplasm, but envelops the chromosome on which 
it is synthesized, or why the MSL complex is present and 
works only on the X chromosome of Drosophila males, al-
though binding sites for this complex are also present on 
autosomes. The formation of relatively low-mobility phase 
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condensates on the platforms of synthesized Xist and 
RoX1/2 RNAs provides an answer to these questions [158, 
159]. It is possible that similar mechanisms work in other sit-
uations when it is necessary to limit the diffusion of certain 
macromolecules. For example, retention of histone dimers 
and tetramers removed from DNA during transcription in 
the phase condensate associated with the transcription com-
plex could ensure their preferential relocation to free DNA 
behind the transcription complex. The same can be said 
about histones removed from DNA as the replication fork 
progresses. These possibilities deserve experimental testing. 
Another long-standing question concerns the platform for 
the cell nucleus compartmentalization. In the late sixties and 
early seventies of the last сenturу the high-salt resistant pro-
teinous structure termed the nuclear matrix was described 
[160]. Subsequent studies made it possible to suggest that 
this structure represents a structural milieu for nuclear com-
partmentalization [161]. However, numerous attempts to 
visualize nuclear matrix in living cells failed. Now it is evi-
dent that what was thought to be a nuclear matrix is in fact 
а liquid condensate filling the interchromatin compartment, 
which (the condensate) solidifies as a result of dehydration 
caused by high-salt extraction [77,162]. As for the platform 
for assembly and compartmentalization of the cell nucleus, 
it is provided by the folded genome [13].

An important property of liquid-phase condensates, 
which explains their almost universal role in the organiza-
tion of the cell nucleus, is the possibility of rapid and regu-
lated (for example, through post-translational modifications 
of the constitutive components of the condensate) assembly 
and disassembly, as well as the possibility of concentrat-
ing various sets of client components in these condensates. 
Moreover, the accumulation of certain macromolecules, in-
cluding proteins and RNA, in the condensate can also be reg-
ulated by various modifications. This property is realized, 
in particular, if it is necessary to temporarily remove certain 
proteins or micro-RNAs from the nucleoplasm (the function 
of a molecular sponge) [163, 164]. In another scenario, con-
densates act as reaction centers in which enzymes and auxil-
iary components necessary for carrying out a particular pro-
cess, for example, repairing DNA damage, accumulate [20]. 
Finally, the assembly of liquid-phase condensates can limit 
the diffusion of various macromolecules, keeping them in a 
specific location. It is significant that relatively slow-moving 
condensates can be anchored on a folded genome through 
their assembly on a platform of transcribed non-coding 
RNAs [16]. The number of works demonstrating the role 
of the process of liquid-liquid phase separation in the im-
plementation of various functional processes inside the cell 
nucleus is increasing every year. It seems that we still have 
a lot to learn in this area of research.
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