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Only seeing is believing – the power of evidence and reason

ABSTRACT

Biomolecular crystallography is a mature science that provides an instructive example for 
modern inductive reasoning as a model for Bayesian epistemology in empirical science. 

Fundamental scientific epistemology requires that a strong claim is supported by strong and 
convincing proof. Biomolecular crystallography, based on solid foundations of rich experi-
mental data and extensive prior knowledge provides a prime example for modern, evidence 
based reasoning that strongly relies on assessments of plausibility based on prior knowledge 
while at the same time constantly delivering some of the most novel and exciting results 
based on new experimental evidence. As a consequence of the solid underlying physical 
principles and its mathematical rigor, crystallography as a mature science could be almost 
fool proof – were it not for the human element.

BIOMOLECULAR CRYSTALLOGRAPHY – THE POWER 
OF EVIDENCE AND OF REASONING

The arguably most powerful instruments in Alexander Wlodawer’s cornu-
copia of research tools is biomolecular crystallography. The results of his out-
standing work on biomolecular structure have delivered deep insights in the 
molecular details of protein function and the machinery of cellular mechanisms. 
The question is, what makes the crystallography of biomolecules, mostly pro-
teins – often in complex with small molecule therapeutic drugs, peptides and 
regulated DNA – such a powerful research tool?

Biomolecular crystallography is an experimental science – the term science be-
ing used here in contrast to simply experimental technique on purpose – and thus 
based on evidence. In the general biomedical sciences, experiments are seldom 
trivial as one is working with live cells, sensitive and easily degrading materials, 
and one often depends on sophisticated assays relying on materials and probes 
that are poorly defined [1]. In addition, the experimenter is not always aware of 
inherent limitations of the selected technique. The result is the poor reproduc-
ibility of a surprisingly large percentage of reported experimental findings in 
biomedical sciences [2]. In contrast, due to the solid underlying physical prin-
ciples and its mathematical rigor, crystallography as a method could be almost 
fool proof – were it not for the human element.

In the following we shall first visit the foundations of biomolecular crystallogra-
phy, point out its strength and weaknesses, and develop why it is such a prime ex-
ample for modern, evidence based reasoning that strongly relies on assessments of 
plausibility based on prior knowledge, while at the same time constantly delivering 
some of the most novel and exciting results based on new experimental evidence.

THE EXPERIMENT

Crystallography is based on the simple fact that any periodic array of objects 
scatters, in a mathematically clearly defined manner, electromagnetic radiation of a 
wavelength comparable to the size of the scattering objects. In the case of molecules, 
the scattering objects are the electrons surrounding the atomic nuclei, with the size 
of an atom in the 1–2 Angstrom (Å) range. The wavelengths useable for diffraction 
therefore are also in the Å range (around 0.1 nm, or ~12 keV on the energy scale). 
Radiation sources for such wavelengths are readily available, and most experiments 
are carried out now using sophisticated machinery – synchrotron sources – that pro-
duce tuneable hard X-ray radiation [3]. Therefore, the term X-ray crystallography.

NO CRYSTALS – NO PROBLEM

The periodic object upon which this X-ray radiation acts, is a crystal. In the 
case of proteins, these crystals are formed via self-assembly of protein molecules 
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into a periodic crystal lattice. This process is non-trivial, and 
at present it cannot be predicted which conditions will lead 
to successful crystallization of a specific protein. Often thou-
sands of trial and error experiments are conducted until a 
diffracting crystal is obtained. Because protein molecules 
are irregularly shaped and asymmetric, they generally pack 
loosely and their crystals are very fragile, sensitive to envi-
ronmental changes, and contain a substantial amount (50% 
on average) of the mother liquor or solvent they grew in [4].

While the requirement to form a highly regular assembly 
of about 1012–109 molecules indeed presents a significant chal-
lenge, the prerequisite to pack identical objects comes with a 
significant benefit. There are practically no problems caused 
by impure samples: Chemically impure and conformationally 
inhomogeneous samples almost never crystallize well. Even 
in the case of successful crystal growth, wherever non-homo-
geneity in the crystal exists, the diffraction experiment sim-
ply does not deliver interpretable evidence. Compare this to 
bioassays, where a small number of active molecules foreign 
species easily can produce an erroneous positive signal.

ONE EXPERIMENT – 10,000s DATA POINTS

Another fact that distinguishes biomolecular crystallog-
raphy from other biomedical or biochemical techniques is 
that one successful diffraction experiment generally deliv-
ers anywhere between a few 10,000s to hundreds of thou-
sands of data points. Figure 1 illustrates that from one single 
crystal an enormous number of diffracted X-rays emanate, 
whose intensity as ‘reflections’ or diffraction spots is read-
ily measured with the aid of modern semiconductor-based 
X-ray area detectors. While a diffraction data set can be 
useless for a variety of reasons, there is no doubt that the 
experiment itself delivers a generous amount of quantita-
tive observations. In contrast, biomedical assays are seldom 
repeated with high redundancy, and their complexity may 
invite selective interpretation of only positive results (cf. § 
“Human folly”).

WHEN MATHEMATICAL RIGOR....

Figure 1 also imparts that we are not done simply with 
diffraction data collection. The diffraction data are obtained 

in a domain reciprocal to the real space humans reside in, and 
thus not interpretable with our senses. Fortunately, a mathe-
matically rigorous and robust method, Fourier Synthesis, al-
lows us to reconstruct the equivalent real space presentation 
of the diffraction data. As the electrons of the atoms are the 
physical source of diffraction, the reconstruction consequent-
ly reproduces the distribution of these electrons in 3D space, 
termed the electron density. If we plot this electron density at 
reasonable contour levels, we obtain an electron density map, 
exemplified by the blue mesh in figure  1. This electron densi-
ty presents our experimental evidence.

The path from diffraction data to electron density is a 
mathematically rigorous one. If there is local disorder in the 
crystal, then this disorder will lead to locally poor electron 
density. If the disorder in the crystal is systemic, the amount 
of diffraction data will be limited, and the electron density 
will reveal little detail, termed low resolution. Again, we are 
protected from producing incorrect evidence: If the data or 
reconstruction are poor, the evidence in form of the electron 
density will be equally poor. Garbage in, garbage out.

....MEETS INTERPRETATIVE FREEDOM

The process of crystallographic structure determination 
(unfortunately, one is tempted to say) does not stop at the elec-
tron density reconstruction. To represent the molecular struc-
ture as present in the crystal, an atomic model is built into the 
electron density. At this point, interpretative freedom enters 
the game, and were freedom is given, liberties are taken [5], 
which Alex Wlodawer and co-workers recently reminded us 
of [6]. An atomic model is simply a collection of atoms, each 
characterized in general by four adjustable parameters: the co-
ordinates x, y, z determining its location, and a fourth, atomic 
displacement parameter B, which is in essence a measure of 
the probability of finding the atom at its stated position. This 
B-factor appears in the negative exponent in the structure fac-
tor summation giving rise to diffraction intensities, and there-
fore, a large B-factor means lower scattering contribution and 
(reciprocally) broad electron density peaks in real space.

It is very important to realize that the crystal structure itself 
is the reality; it consists of all matter in the crystal that gives 
rise to the diffraction pattern, including macromolecules, li-
gands, ordered and disordered solvent. The model we build 
into the electron density is not the crystal structure per se, it is 
only a limited presentation of the ordered parts of this crystal 
structure, conceivable as a hypothesis as to what the actual 
molecules might look like. This viewpoint as a testable hy-
pothesis will become important later in the discussion.

An atomic structure model containing n atoms always 
and invariably requires 4n parameters for its description - 
irrespective of how well the crystal diffracts (which affects 
how many data points can be collected), and consequently, 
how detailed the reconstructed electron density is. It is quite 
intuitive then that, the better the electron density represents 
the atomic detail, the more accurate the atomic model will 
be. On the other hand, with poor electron density, the place-
ment of an atomic model can become extremely difficult. 
With poor electron density, unbiased automated model 
building programs tend to fail, and subjective interpretative 

Figure 1. The diffraction experiment is conceptually simple. A rotating crystal is 
exposed to a brilliant X-ray beam, and a series of diffraction patterns is record-
ed on a 2D area detector. From the diffraction data and phase information, the 
electron density as the primary evidence is reconstructed. The entire process is 
technically non-trivial, but mathematically rigorous. Little opportunity for inter-
pretative freedom exists at this stage.
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freedom and individual desires may become the dominant 
factors in model building (Fig. 2).

Mathematically, the adjustment of the model parameters 
x, y, z and B for each atom by reciprocal space refinement (so 
that the calculated diffraction intensities match the observed 
ones), is in most instances severely underdetermined: Con-
sidering diffraction data only, not enough data points are 
available to optimize the 4n atomic parameters with any 
accuracy. Except in rare instances of true atomic resolution 
data, no physically reasonable structural model of a protein 
molecule could ever be obtained based on interpretation of 
electron density and refinement against data alone.

GREAT EXPECTATIONS

“All other swindlers upon earth are nothing to the self-swin-
dlers, and with such pretences did I cheat myself.” – Charles 
Dickens, Great Expectations, 1861 [7]

As a result of the solid body of knowledge about the struc-
ture of matter gained by high resolution crystallography over 
the past 100 years [8], we have quite accurate expectations 
about the properties of a plausible protein structure model. 
Particularly the stereochemistry is well described, and bond 
lengths, bond angles, and preferred torsions as well as the chi-
rality of the asymmetric centres are known. The incorporation 
of prior knowledge into the posterior probability of our model 
likelihood during reciprocal space refinement provides evi-
dence-based models that at the same time maintain plausible 
physical properties. But the inclusion of prior evidence comes 
at a price: Our prior expectation, gained through averaging of 
large numbers of well-established instances (largely derived 
from accurately determined small molecule structures) can 
only be modified to reflect the individual new crystal structure 
by including strong evidence. The weaker the evidence, the 
more we must rely on prior knowledge, and the less we will 
learn about the specifics of our new molecule. In fact, a purely 
computational model can appear perfect as far as its stereo-
chemistry is concerned, and at the same time bear no relevance 
to any reality. Any validation of such a model against expected 
stereochemistry will therefore reveal no problems – the curse 
of the restraints – making it clear that the inspection of the 

model against actual evidence – the electron density – is the 
most important safeguard for the creators as well as the users 
of crystallographic models. The need for local electron density 
inspection has long been recognized [9] and its importance for 
review has been re-emphasized [10] a decade ago.

What may surprise is that while from § 2.3 we understand 
that without experimental data we simply cannot reconstruct 
the electron density, the need for public deposition of the 
experimental data became mandatory only in 2008. Even to 
this date, only the PDB validation reports are ‘recommended 
reading’ for reviewers, but no mandate exists to inspect the 
electron density for new structure model depositions. A re-
lated unresolved question is how to expunge demonstrably 
wrong models from the public data repositories, where they 
bias data mining and lead to invalid meta analyses [6]. Alex 
Wlodawer has also been at the forefront of opening the dis-
cussion on these unresolved and contentious issues [11,12].

INDUCTIVE REASONING IN CRYSTALLOGRAPHY

Modern biomolecular crystallography rests on two funda-
mental pillars: an enormously rich number of experimental 
data points – each single data set contains hundreds of thou-
sands of individual observations, and a rich collection of expec-
tations about how a healthy protein structure in general should 
look like. These facts allow for a sensible application of ad-
vanced, probability-based statistical inference methods. First, 
the large number of experimental data allows us to reliably ap-
ply the law of large numbers and the central limit theorem in 
the statistical analysis and processing of the data themselves. 
At the same time, the presence of a solid body of prior expecta-
tions allows us to keep our models in check with reality even in 
view of limited data. The formalism that allows to incorporate 
this line of reasoning – the weighting of new evidence against 
prior expectations – into a formal logical framework was intro-
duced in the 1700s during the age of Enlightenment and the 
time of the establishment of the Royal Society in London. The 
original posthumous publication by Bayes [13] preceded the 
modern treatment by Laplace [14] in use today. In addition 
to the rules of formal reasoning, the interpretative freedom 
during the model building stage requires crystallographers to 
be also aware of: the concept of parsimony; the need to support 
extraordinary claims with extraordinary evidence; and not the 
least, to be aware of cognitive biases and postmodern excur-
sions that may affect judgement.

The concept of Bayesian inference has penetrated the 
field of crystallography since its introduction in the late 
1970s by Simon French [15] and by Gerard Bricogne in his 
Bayesian Programme in the early 1980s [16]. Its applications 
range from intensity measurement corrections [17] to phas-
ing [18-21], density modification [22], model building [23], 
and to regularized maximum posterior likelihood refine-
ment (also simplified as Maximum Likelihood refinement) 
of biomolecular structure models [24-26].

EXAMPLES

Negative diffraction intensities. One of the earliest and 
most intuitive examples for the application of Bayesian reason-
ing relates directly to data collection. In the diffraction exper-

Figure 2. Electron density needs to be interpreted to obtain an atomic model of 
the macromolecule. If the electron density is poor, unbiased automated model 
building or ligand placing programs often fail, and ample opportunity for inter-
pretative freedom and human folly enters the game.
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iment, we count the number of photons scattered in a specific 
direction, and express the number of counts as an intensity. In a 
perfect experiment, these intensities would always be positive 
numbers, but experimental errors can lead to negative values. 
The presence of negative intensity values poses a dilemma: We 
instinctively realize that it makes no sense to measure negative 
photon counts (either no diffraction occurs, or it does), and in 
addition, the downstream processing requires us to take the 
square root of the intensities. In the case of negative intensi-
ties a complex number results, promptly violating the physical 
principle that an observable of any quantum-mechanical pro-
cess has to yield a scalar (simple number) value.

The question is what to do in this case. Simply throwing 
out the negative data omits valuable information that we 
possess (we are fairly certain that the intensity is at least not 
very high) and it does reek a bit of confirmation bias, name-
ly using only data that fit our preconceptions. Bayes to the 
rescue: We have reasonable expectations how on average 
– properly based on a large number of events – diffraction 
intensities will be distributed [27]. Therefore, we can articu-
late a posterior likelihood by modifying this always positive 
expectation value in view of an observed negative intensity: 
A very high negative intensity would make it very unlikely 
that the actual value could be high, and at the same time, 
allows to assign a very high uncertainty to this value. The 
basics for Bayesian algorithms used today in the processing 
of negative intensity data have been introduced by French 
and Wilson in 1978 [17].

Restraining excessive freedom. It was pointed out in § 
“Great expectations” that a model built in real space in the 
electron density will have many correlated small errors in 
bond lengths, bond angles, planarity, or other stereochemi-
cal parameters which simply cannot be corrected due to in-
sufficient detail in the electron density. To correct these er-
rors, we employ regularized maximum posterior reciprocal 
space refinement against a squared likelihood residual that 
includes our prior expectations of reasonable stereochemis-
try. While this sounds complicated, in effect we are simply 
limiting excessive freedom of our model, while at the same 
time allowing for errors and incompleteness in our model.

THE EPISTEMOLOGICAL MACHINERY

The embedment of our inductive inference problem into a 
formal probabilistic framework is provided by Bayes’ Theo-
rem. It can be derived directly from the product rules for joint 
independent probabilities [28-30]. In terms of model (M) and 
data (D)

 						      (1)

The sought-after posterior model likelihood  prob(M│D)
is the joint probability of the (data) likelihood function  
prob(D│M) (which can be more or less readily calculated giv-
en the model) and the prior probability of our model  prob(M) 
gained independently of the actual data. The denominator  
prob(D) takes on different forms, depending on what we in-
tend to use Bayes’ theorem for. If we apply Bayes’ theorem to 
hypothesis testing or if we are interested in absolute values, it 

( | ) ( )( | )
( )

prob D M prob Mprob M D
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×
=

becomes a marginalization term as the sum of probabilities of 
all alternate hypotheses. In the case of parameter estimation, 
we can simply absorb it in a proportionality constant, because 
the maximum of a likelihood function remains at the same 
optimal parameter vector irrespective of its absolute value. 
The Bayes’ formula then simplifies to:

( | ) ( | ) ( )prob M D prob D M prob M∝ × 	 (2)

Maximizing prob(D│M)  by adjusting the model parameters 
also maximizes our posterior likelihood and thus provides the 
best model. This is the basis of Maximum Likelihood Methods in 
crystallography. Because we also include deviations from the 
expected geometry in the optimization target function, the pro-
cedure is in fact a regularized maximum posterior (likelihood) 
refinement. Note that the quest for the optimal set of parame-
ters for a given parameterization of a model is not the same as 
the quest for the best model (which may be differently param-
eterized). The former is a question of minimization, but the sec-
ond one is one of hypothesis testing, generally examined via a 
likelihood (or Bayes) ratio of competing hypotheses.

Bayesian reasoning. Examination of (2) imparts an import-
ant observation: In order to achieve maximal posterior proba-
bility of our model, solid evidence (meaning that our model re-
produces the data well) combined with reasonable compliance 
with already established facts are optimal. At the same time, 
we realize that if our evidence is weak, we must rely heavily on 
the prior expectations, while vice versa to overcome ingrained 
prior expectations, our evidence term needs to be very strong; 
in other words, a strong claim needs comparably strong evi-
dence. As a practical example, take the claim of a specific loca-
tion and conformation of a ligand molecule in a protein struc-
ture: This specific pose is just one of many competing hypothe-
ses of possible locations and conformations, and there better be 
strong evidence in form of electron density for that ligand (Fig. 
3). The most definite proof for a ligand is unbiased positive 
omit difference density. That not all is well in macromolecular 
crystallography as far as evidence for plausible ligands is con-
cerned has been recently shown [31].

The interpretation of the data likelihood function  
prob(D│M) as a modifier for our prior belief for a hypothesis (or, 
in our structure, model M ) reveals another important aspect 
of Bayesian inference: Any model that fundamentally con-
tradicts prior knowledge will have to provide very convincing 
and solid experimental evidence to persuade us to accept it as 
probable and eventually change our generally well established 
prior perceptions. An excellent example is the crystallograph-
ic determination of the, until then considered impossible, 
4-membered lactam ring structures by Dorothy Hodgkin [34]. 
Convincing and reproducible evidence is the means by which 
science eventually corrects its own misperceptions [35]. Weak 
data will not overcome a strong prior probability or knowl-
edge, but a strong experiment can either modify or affirm our 
prior beliefs. An excursion into Thomas S. Kuhn’s The Structure 
of Scientific Revolutions may be suggested further reading [35].

Parsimony and cross-validation. The principle of parsimo-
ny or the ‘law of succinctness’ commends selecting a model or 
hypothesis that postulates as few parameters as possible, there-
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by eliminating unnecessary variables that make no significant 
difference in the fit of the model (or an explanatory hypothesis) 
to the data. This basic idea dates back to the English logician 
and Franciscan friar William of Ockham (1288-1347, Occam 
in Latin spelling) and is known as Occam’s razor: “Numquam 
ponenda est pluralitas sine necessitate”, or “Multitude must never 
be proposed without necessity”. In formal terms, Occam’s rule can 
be derived via the Bayesian formalism: A hypothesis with few-
er adjustable parameters will automatically have an increased 
posterior probability [36].

For the highly multi-parametric models of biomolecular 
structures, the question arises as to when does a model be-
come non-parsimonious? One statistical method much used 
in machine learning is to set aside a small cross-validation 
test data set that is excluded from refinement. As long as 
introduction of adjustable refinement parameters improves 
both the fit of the model to the working data set as well as 
the fit to the test data set, the parameter choice can be jus-
tified. This introduction of R-free [37] helped to (slowly) 
convince crystallographers that indiscriminately throwing 
solvent molecules in any spurious density peaks leads only 
to non-parsimonious overfitting but not to a better model. 
Similar crossvalidation exists in real space through omit 
maps [38,39] (where a small part of the model, or ligand in 
question, is omitted from refinement before calculation of 
the Fourier coefficients). Positive difference omit maps are 
the golden standard for proof of the presence of a ligand in 
a complex structure [31]. The fact that peptide torsion an-
gles are important non-restrained stereochemical parame-
ters with a high degree of freedom but with well-defined 
prior distributions, renders them an ideal geometric real 
space cross-validation test set. Particularly in peptide ligand 
structures, backbone conformations have been published 
that can be charitably described only as delusional [40-42], 
as exemplified in figure 4.

HUMAN FOLLY

With all the advanced automated data collection, advanced 
probabilistic computational crystallography programs, and co-
pious validation tools, one wonders why some investigators 
still and with great apparent enthusiasm, deposit models of 
ligands in absence of credible electron density support, and 
often of implausible conformations (Fig. 4). A lack of technical 
competence is almost certainly a contributing factor, but cogni-
tive bias seems to be the real and more fundamental problem, 
as suggested early on by various critical voices [5,9,43] and re-
cently emphasized by Alexander Wlodawer and co-workers 
[6,12,44,45].

That “the human understanding is not composed of dry light, 
but is subject to influence from the will and the emotions, a fact that 
creates fanciful knowledge; man prefers to believe what he wants 
to be true” is not a new insight [49,50]. Francis Bacon’s above 
statement published originally in 1620 reminds us that wish-
ful thinking and self-deception in the course of electron den-
sity interpretation are, next to poor training and negligence, 
perhaps the most common reasons for the creation of flawed 
structure models. Seeing spurious density as evidence for the 
presence of a ligand is known as confirmation bias, while the 
ignorance of warning signs such as adverse real space correla-
tion of distorted geometry (or not even conducting validation 
or reading validation reports) constitutes a form of expectation 
bias [51]. Even the editors of scientific vanity journals have only 
recently (apparently as victims of expectation bias themselves) 

Figure 3. A peptide inhibitor with optimal fit to electron density. The figure 
shows the peptide inhibitor pepstatin A (ball and stick model) bound to a retrovi-
ral protease in clear electron density (blue grid), contoured at a 2mFo-DFc electron 
density level of 1 sigma (PDB entry 3sm1, chain J, by Alexander Wlodawer and 
coworkers [32]). There is (i) no doubt about the presence and pose of the inhibitor, 
(ii) the peptide inhibitor assumes a stereochemically plausible conformation, and 
(iii) no steric clashes or implausible interactions with the protease are indicated. 
Positive omit difference density practically overlaps with the displayed density. 
The image was prepared using the model building graphics program Coot [33] 
displaying the 2mFo-DFc electron density map reconstructed from maximum like-
lihood coefficients computed by the refinement program Refmac [26].

Figure 4. An improbable peptide ligand. The main figure shows a model of a 
peptide antigen (ball and stick model) bound to an Fab antibody fragment (thin 
sticks), together with its positive mFo-DFc omit difference density, meaning that 
the ligand was omitted during maximum likelihood difference electron density 
map calculation. The peptide model should be surrounded by clear difference 
density (green mesh, contoured at 2.5 sigma above mean noise level) resembling 
its distinct shape. There are only discontinuous fragments visible, which in part 
can be explained by ordered solvent (the round green spheres are typical of water 
molecules). In addition to (i) not being placed in any recognizable electron den-
sity, the antigen model (ii) has a multitude of unreasonably close contacts (steric 
clashes, visualized as the nasty red spikes) with the antibody fragment, and (iii) 
has an utterly implausible high energy backbone conformation, as evidenced by 
finding all the backbone φ/ψ torsion angle pairs (circled) in unfavourable regions 
of the Ramachandran plot (top right insert). The combination of absence of prima-
ry evidence together with violation of any established prior expectations preclude 
the presence of this modelled peptide in the crystal structure (PDB entry 2a6i, 
chain P, [46]). The publication citing this model as evidence has been lauded in 
an editorial [47] and cited 67 times in Scopus. None of this speaks for the quality 
of the associated peer review and editorial stewardship. The image was prepared 
using the model building graphics program Coot [33] displaying the mFo-DFc map 
reconstructed from maximum likelihood coefficients computed by the refinement 
program Refmac [26]. The backbone torsion angles and interatomic clashes were 
calculated with the MolProbity suite [48].
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woken up to the manifestation of human factors clouding their 
inferential reasoning [52]. That editors (and reviewers) accept 
papers based on newsworthiness instead of high Bayesian de-
gree of belief, is a primary reason for data base contamination. 
Jonathan Swift, another contemporary of the Enlightenment, 
succinctly states: “Falsehood flies, and truth comes limping after it, 
so that when men come to be undeceived, it is too late; the jest is over, 
and the tale hath had its effect” [53].

POSTMODERN ABERRATIONS: TO ERR IS 
HUMAN, TO REALIZE IT IS DIVINE

A contributing factor to the ignorance of the basics of induc-
tive inference, which have served us well since the Enlighten-
ment, is the subtle creep of postmodernism into the scientific 
curriculum. Allen Sokal, author of an infamous hoax in Social 
Text [54] defines postmodernism as “An intellectual current 
characterized by the more-or-less explicit rejection of the rationalist 
tradition of the Enlightenment; by theoretical discourses disconnect-
ed from any empirical test; and by a cognitive and cultural relativ-
ism that regards science as nothing more than a narration, myth or 
a social construct among many others”. In response to members 
of the open minded crowd inclined towards model building 
anarchy, who often like to misquote from Against Method [55], 
one might suggest a helpful amended quote: “Anything goes - 
as long as you do not know what you are doing”.

Analysis of spurious evidence in fact provides one with an 
enormous amount of interpretative freedom. The outcome in 
general is what is well described as fringe science [56]: “The 
first characteristic of pathological science is that the effect being 
studied is often at the limits of detectability or has very low sta-
tistical significance.”. In defence of hypotheses based on weak 
evidence, arguments such as the following may be voiced: 
“In my scientific pursuit, I develop and follow a hypothesis until 
it has been proven to be flawed, and I have not reached that point 
at all with this study.” This argument – essentially an abuse 
of Karl Popper’s falsification requirement [57], however 
‘open-minded’ it may sound – is deeply flawed. The point 
of Bayesian inference – which actually and effectively guides 
us in everyday life as it does in scientific review – is exactly 
that not every outlandish hypothesis (e.g. being able to walk 
through walls) must be pursued each time until falsification. 
In a similar fashion, fringe scientists, UFO acolytes, and other 
transcendentalists provide the argument that “The absence of 
evidence is not the evidence of absence”. Bayes of course clobbers 
this equally superficially open-minded argument, which ig-
nores any prior probability terms: The crucial difference be-
tween the absence of a fossil find in an evolutionary sequence 
and the absence of UFO remnants is the strikingly different 
level of prior probability. In the same sense, prior knowledge 
dictates that discrete features of a crystallographic model must 
be associated with clear evidence of electron density. The fi-
nal conclusion then, distilling our entire discourse into a sin-
gle sentence at the core of crystallographic reasoning simply 
reads: Absence of electron density is evidence of absence.

FINAL REMARKS

Macromolecular crystallography has in almost unprec-
edented ways provided the basis for defining the detailed 
molecular mechanisms and interactions of biological pro-

cesses. Future biological sciences will progress from the ba-
sis of these established building blocks to an interconnected 
synergetic view of biological systems - but only if the under-
lying models of these processes are based on solid evidence. 
Alexander Wlodower’s work in biomolecular crystallogra-
phy has greatly contributed towards this goal. Best wishes 
on your 70th birthday, Alex.
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STRESZCZENIE
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