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Molecular interactions between tumor  
and its microenvironment in malignant gliomas

ABSTRACT
Growing evidence supports a critical role of the tumor-reprogrammed stromal cells in tumor 
growth and progression. Several extracellular communication networks are hijacked by the 
tumors to influence the surrounding tumor microenvironment. In malignant gliomas, tumor 
derived factors attract brain resident microglia and peripheral macrophages. These cells, in-
stead of initiating antitumor responses, are re-educated by tumor cells and participate in 
matrix remodeling, support invasion and angiogenesis, and induce immunosuppression. 
Molecular underlining of these mutual and complex interactions in malignant gliomas is the 
main scope of this review.

INTRODUCTION

Cancer is driven by genetic and epigenetic abnormalities that accumulate 
in pre-malignant cells and lead to uncontrolled growth, resistance to cell 
death, invasion, reprogramming of energy metabolism, neoangiogenesis and 
evasion of immune recognition and destruction [1]. Moreover, a growing 
number of experimental and clinical data shows that numerous non-neoplas-
tic cells such as macrophages, lymphocytes, neutrophils, mast cells, stromal 
fibroblasts, pericytes and endothelial cells accumulate within a tumor niche 
and contribute to tumor growth, progression and resistance to treatment 
[2-4]. This supportive stroma composed of various populations of cells sur-
rounded by the extracellular matrix (ECM) creates the tumor microenviron-
ment (TME) [1,5].

Composition and structure of tumor surrounding ECM, as well as func-
tions of residing stromal cells and infiltrating immune cells are modified by 
the neoplastic cells. One of the main infiltrate are innate immune cells, col-
lectively called tumor-associated macrophages (TAMs), which are the key 
responders to tumor-derived signals in many types of cancer. Instead of ini-
tiating anti-tumor responses, TAMs play an instrumental role in shaping a 
tumor niche by promoting angiogenesis, supporting tumor invasion, and by 
mobilization of different cells from circulation and a bone marrow [3,4,6,7]. 
In this review we focus on molecular interactions between various cells infil-
trating glioblastoma (GBM, WHO grade IV glioma), the most common and 
aggressive primary brain tumor in adults [8]. Due to diffusive growth im-
peding complete surgical resection and poor responses to current therapies, 
GBMs invariably re-grow and are considered to be one of the most deadliest 
human malignancies. Despite application of surgery, radio- and chemothera-
py the median survival of GBM patients is 15 months from diagnosis [9]. We 
describe cellular composition of GBMs, key signaling factors produced by 
GBM cells to attract and “re-educate” infiltrating cells, as well as mechanisms 
triggered in recruited immune and stromal cells that are implicated in facili-
tating tumor growth (summarized in figure 1). Communication networks in 
GBM can be formed by direct cell-to-cell contact via specialized structures, 
by shedding membrane vesicles (i.e. microvesicles, exosomes), secretion of 
soluble factors or binding to constituents of ECM by both tumor and host 
cells. The two latter types of interactions, which are based on ligand – recep-
tor axes, are the major scope of this review. In the final section of the manu-
script we provide examples of targeting these interactions by new therapeu-
tics, which hold a promise to be affective against GBM.

TUMOR MICROENVIRONMENT OF GBM

Brain tumors, similarly to non-brain cancers, attract and change the phe-
notype of stromal cells, creating tumor-permissive TME. Brain tissue is com-
posed of a variety of cells, including neurons, astrocytes, oligodrocytes and 
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microglia, all cells submerged in ECM. Brain is also physi-
cally protected from periphery by the blood-brain barrier, 
which does not allow penetration of peripheral immune 
cells under physiological conditions, and is preserved in 
early-stage brain tumors. However, in advanced tumors, 
such as GBM, the blood-brain barrier is often compro-
mised allowing a robust infiltration of multiple immune 
cell types from circulation [7,10,11].

Microglia are the brain surveying macrophages and 
constitute the first line of innate immune defense in the 
central nervous system (CNS) [11,12]. Microglia develop 
from embryonic yolk sac progenitor cells, migrate to the 
CNS early in the development [13] and are not replen-
ished postnatally by peripheral mononuclear hemat-
opoiesis [14]. Although ontogenetically distinct, once 
attracted and activated by glioma cells, microglia can’t 
be distinguished from infiltrating peripheral, bone mar-
row derived macrophages and are jointly characterized 
as glioma-associated microglia/macrophages (GAMs) 
[10,11,15]. Clinical and experimental studies, including 
ours, show that GAMs are a major component of leuko-
cytic infiltrates in rodent glioma models and in human 
GBMs constituting up to 30% of the tumor mass [16-21]. 
Other identified cells include dendritic cells, myeloid-de-
rived suppressor cells (MDSCs), Th-2 polarized and regu-
latory T-lymphocytes, as well as natural killer (NK) cells 
and CD8+ cytotoxic T cells [15]. Interestingly, despite ac-
cumulation of numerous innate immune cells, the proper 
antitumor responses in GBMs are not initiated. Usually 
upon stimulation microglia become immune effector cells 
and produce many factors activating other immune cells. 
Similarly to other tissue macrophages, microglia can ac-
quire distinct functional phenotypes and depending on 
a type of stimulus, these cells can initiate either inflam-
mation or immunosuppression/wound healing processes 
[12,22]. In response to tissue injury or microbial infection 
microglia polarize to M1, inflammatory cells, which also 
participate in tumor surveillance and carry on antitumor 
activity in benign gliomas [11,23]. They secrete inflamma-
tory mediators and cytokines (nitric oxide, tumor necrosis 
factor (TNF)α, interleukin (IL)-12 and IL-23 that promote 
Th1 responses of T lymphocytes. “Alternatively activat-
ed” M2 microglia or macrophages play a role in resolu-
tion of inflammation by endocytic clearance, tissue repair 
and trophic factor synthesis, and support Th2-associated 
effector functions. M2 macrophages share an interleukin 
IL-12low and IL-23low phenotype, generally display high 
levels of scavenger, mannose and galactose-type recep-
tors, and arginine metabolism is shifted to production of 
ornithine and polyamines via arginase 1 [12,24]. Func-
tional polarization of different tissue macrophages to the 
M2 phenotype occurs under physiological conditions: e.g. 
ontogenesis and pregnancy, and in pathology: parasite 
infections, allergic reactions and chronic inflammation, 
tissue repair and remodeling, infection and cancer [25].

Formation of gliomas can be imitated in animal mod-
els, which are created by either implantation of glioma 
cells to a brain structure called the striatum or by genetic 
manipulations in transgenic mice introducing oncogenic 
genes into neural cells. The resulting tumors could be 

isolated from tumor-bearing hemispheres and after me-
chanical and enzymatic dissociation, specific cells could 
be labelled and sorted by flow cytometry to analyze tu-
mor composition and properties of specific cells. Glioma 
infiltrating microglia/macrophages are recognized as 
CD11b expressing cells and could be further separated 
into subpopulations based on CD45 expression: with 
microglia being CD11b+CD45low and macrophages being 
CD11b+ CD45high. One of the most frequently used meth-
ods is evaluation of gene expression profiles of those cells 
by RNA sequencing or microarrays, which provides a 
global picture of undergoing processes. We and other re-
searchers demonstrated that GAMs isolated from rodent 
and human gliomas exhibit the immunosuppressive and 
pro-invasive phenotype [11,18,19,21,26]. Categorization 
of GAMs as having the M2 phenotype has been recently 
found inaccurate because of oversimplification of their 
highly complex and heterogeneous responses. Transcrip-
tomic analyses of CD11b+ cells isolated from human GBMs 
and rodent experimental gliomas showed a small overlap 
between their expression profiles [21,27,28]. Moreover, 
computational comparison of genes significantly changed 
in GAMs from different experimental models and clinical 
samples revealed only a small set of common genes [29]. 
This could be due many reasons: technical differences in 
cell isolation, a presence of mixed subpopulations of cells 
with different functions, inadequacy of animal models 
poorly reflecting human pathology or imprecise catego-
rization of M1/M2 markers. Although, these collected re-
sults are biased by differences in isolation procedure and 
cell identification criteria, the observed heterogeneity of 
responses may also result from co-existence of pro- and 
anti-inflammatory subsets of microglia and macrophages 
at specific phases of tumor evolution as well as dissimilar 
roles of microglia and peripherally recruited macrophag-
es, which are yet to be understood [30,31]. Noteworthy, 
functional analysis on compared transcriptomic datasets 
from isolated GAMs shows similarities in upregulated 
cellular signaling pathways across all models [29]. It sug-
gests that regardless of the observed differences, there is 
still an universal mechanism orchestrating polarization 
of microglia and macrophages within the tumor microen-
vironment. Thus, despite discrepancies between species 
and models, there is currently a consensus on pro-tumor-
igenic functions of these cells in GBMs.

TUMOR-DERIVED MOLECULES DRIVING 
RECRUITMENT AND POLARIZATION  
OF STROMAL AND IMMUNE CELLS

Signals that are responsible for recruitment of hetero-
geneous cell populations to glioblastomas and inducing 
the tumor-supportive phenotype in stromal and infiltrat-
ing cells are still inadequately understood. Due to dereg-
ulation of signaling pathways, distinct metabolism and 
behavior, tumor cells produce distinct metabolites, se-
crete factors and release microvesicles carrying different 
molecules (miRNA, RNAs, proteins). Numerous studies 
showed secretion of a plethora of chemotactic and dif-
ferentiation factors that attract various populations of 
immune and stromal cells, and switch them to different 
phenotype in the immunosuppressive and pro-invasive 



Postępy Biochemii 64 (2–3) 2018 131

environment [7,11,32]. Several glioma-derived factors 
have been implicated in controlling recruitment and/or 
polarization of host cells, mainly GAMs, to the glioma-
supportive phenotype (Fig. 1).

CYTOKINES AND GROWTH FACTORS

Macrophage proliferation, differentiation and chemot-
axis is regulated by several factors, including macrophage 
colony-stimulating factor (M-CSF/CSF-1), granulocyte 
macrophage colony-stimulating factor (GM-CSF/CSF-2), 
interleukin 34, chemokine CCL2, macrophage chemoat-
tractant proteins (MCPs). The colony-stimulating factors: 
GM-CSF, M-CSF and G-CSF participate in granulocyte 
and myeloid hematopoiesis, and regulate many immune 
functions [33].

The macrophage colony stimulating factor 1 (M-CSF/
CSF-1/) is required for differentiation, proliferation and 
survival of monocytes and macrophages and released by 
many types of cells (macrophages, fibroblasts, endothe-
lial cells) [34]. M-CSF/CSF-1, but also IL-34, bind to CSF-
1R receptor expressed on monocytes, tissue macrophages 
and monocyte-derived dendritic cells. Ligand-receptor 
interaction induces phosphorylation of the receptor and 
recruitment of Src kinase, PI3-kinase and Cbl adaptor 
protein followed by activation of downstream signaling 
pathways [35,36]. It has been shown that CSF-1 is over-
expressed in human glioblastomas [17,37-39]. Inhibition 
of CSF-1R resulted in regression of established tumors in 

mouse glioma models and significantly increased animal 
survival. Depending on the mode of treatment, blocking 
of CSF-1R caused either depletion of GAMs or reduction 
of M2 phenotype markers in surviving GAMs [2,40,41]. 
Changing GAM phenotype had the greater inhibitory ef-
fect on glioma growth than GAM depletion [2]. By con-
trast, we found that CSF-1 expression was barely detected 
in murine GL216 glioma cells and human glioma cells (at 
similar levels as in non-transformed astrocytes), and was 
not significantly up-regulated in glioma tissues [21,42]. 
Interestingly, growth of GL261 gliomas and accumula-
tion of GAMs were not affected in mice having a non-
functional csf-1 gene [42]. These mice due the lack of Csf-1 
have a reduced number of macrophages in various tis-
sues, including the brain [43]. It suggested compensation 
of Csf-1 deficiency by tumor-derived factors or/and other 
cytokines with a similar activity.

We found the up-regulated Csf-2 levels in extracts from 
brains with implanted GL261 gliomas and the increased 
expression of csf-2 in glioma cells compared to non-trans-
formed astrocytes [21]. We developed clones of GL261 
glioma cells stably depleted of Csf-2 that were implanted 
to the striatum of mice and found the reduced content of 
infiltrating GAMs and smaller tumors. We demonstrated 
that glioma-derived Csf-2 is responsible for recruitment/
activation of microglia/macrophages and tumor progres-
sion. Invasion of glioma cells lacking Csf-2 was greatly 
reduced in organotypic brain slice cultures. If microglia 
were eliminated from the slices, glioma cells lacking Csf-

Figure 1. Communication network in TME of malignant gliomas. 

Brain resident microglia and bone marrow-derived macrophages (BMDM) are attracted and polarized by glioma-derived factors to tumor supporting cells, called glio-
ma-associated microglia and macrophages (GAMs). GAMs play a key role in shaping TME to promote tumor development. They support glioma cells proliferation and 
invasiveness, stimulate angiogenesis and contribute to immune evasion by recruitment of immunosuppressive cells, such as myeloid derived suppressor cells (MDSC) or 
T regulatory cells (Treg) and blocking the function of cytotoxic T cells (Tc) and NK cells.
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2 invaded brain slices as non-modified tumor cells. This 
pointed to the cytokine role in microglia-dependent tu-
mor invasion [42].

 Our finding that CSF-2 produced by tumor cells is a 
driving force for accumulation of CD11b+ cells in glio-
blastomas may explain the observed heterogeneity of im-
mune cells infiltrating tumors, in particular the presence 
of myeloid-derived suppressor cells (MDSCs). These cells 
are myelomonocytic cells lacking the markers of mature 
myeloid cells and are capable to suppress both adaptive 
and innate immune responses. MDSCs accumulate in the 
blood and at tumor sites in patients with breast, lung, 
prostate, kidney, head and neck tumors, glioblastomas, 
and in animals with experimental cancers [6,44]. CSF-2 
(and G-CSF) synthesized by the tumor itself and by the 
brain damaged due to a growing tumor stimulates bone 
marrow to shift hematopoiesis toward production of cells 
of granulocytic/monocytic lineages. This shift produces 
immunosuppression and results in reduced lymphopoie-
sis characteristic for glioblastoma patients [45].

The relevance of our findings to human GBM pathol-
ogy was also confirmed by the analysis of the clinical ma-
terial. The expression of CSF-2 was highly up-regulated 
in GBM biopsies, when compared to benign tumors and 
normal brain. Kaplan-Meier survival curves acquired 
from the Rembrandt depository showed inverse correla-
tion between CSF-2 mRNA levels and survival of glioma 
patients [42]. Other studies confirmed high expression of 
CSF-2 mRNA in glioblastomas [46,47].

The other factor implicated in regulation of myeloid 
cell recruitment is the glial cell-derived neurotrophic fac-
tor (GDNF), which promotes differentiation and survival 
of many cells in the central nervous system (CNS). It sig-
nals through GDNF receptor-α1 (GFR-α1) and activates 
RET tyrosine kinase pathway [48]. GDNF is expressed 
by different cell types, such as neurons, astrocytes and 
is overexpressed by glioma cells [49,50]. Ku et al. demon-
strated that GDNF secreted by mouse GL261 and human 
high grade glioma cells is a chemoattractant for microglia. 
Silencing of Gdnf in GL261 glioma cells reduced accumu-
lation of GAMs and decreased glioma growth in vivo [49].

CHEMOKINES

Chemokines are small proteins with chemoattract-
ant functions. They belong to a large superfamily of 
peptides produced and secreted by different cell types. 
Chemokines are classified in four groups (C, CC, CXC, 
and CX3C) according to the number and location of the 
conserved cysteine residues in the primary structure of 
these molecules. Chemokines are crucial autocrine and 
paracrine players in tumor development, and many 
chemokines from CXC and CCL groups have been impli-
cated in GBM pathology.

The “CXC” group (in which one amino acid is pres-
ent between the first two cysteines) includes 21 proteins 
(CXCL1-21) mostly encoded on human chromosome 4. 
CXC chemokines bind at least 7 receptors (CXCR1-7) 

and mediate neutrophil chemotaxis. The CXC group can 
be divided into two main categories based on the pres-
ence of the tripeptide Glu-Leu-Arg (ELR) before the CXC 
motif (N-terminal domain). Representative CXC chemo-
kines include CXCL8/IL-8, among the ELR-contain-
ing peptides and CXCL9/monokine-induced by IFN-γ 
(MIG), CXCL10/IFN-γ inducible protein-10 (IP-10), and 
CXCL12/stromal cell-derived factor-1 (SDF1) as ELR 
negative molecules. CXCL12 (SDF-1), through its recep-
tors CXCR4 and CXCR7, supports tumor progression by 
controlling cancer cell survival, proliferation and migra-
tion, and, indirectly, via angiogenesis or recruiting dele-
terious immune cells at tumor sites. CXCL12 is a potent 
microglia and macrophage recruiting molecule, especial-
ly for attracting these cells to hypoxic areas, where they 
support tumor neovascularization [51]. SDF-1 is one im-
portant factor in radiotherapy-induced tumor invasive-
ness, where it exerts its primary effect through macro-
phage mobilization. CXCL12/CXCR4 up-regulation was 
also observed after treatment with anticancer drugs, par-
ticularly after treatment with anti-VEGF antibodies [52].

Representative CC chemokines (structurally character-
ized by four cysteines) are CCL2 (also called monocyte 
chemotactic protein, MCP-1), CCL3 and CCL4 (macro-
phage inflammatory protein MIP-1α and MIP-1β), CCL5 
(RANTES), and CCL11 (eotaxin). MCP-1was the first 
identified monocyte chemotactic factor. It is released by 
several cancer cells including glioblastoma [53-55]. MCP-
1 signals through CCR2 receptor and induces migration of 
different immune cells such as monocytes, macrophages, 
T cells and NK. Rat glioma cells expressing MCP-1 pro-
tein in vivo generated threefold larger tumors with ten-
fold higher number of infiltrating GAMs, and this result-
ed in significant reduction of rat survival [53]. In humans, 
increased MCP-1 expression has been associated with 
high number of GAMs infiltrating tumor tissues, glioma 
malignancy and poor clinical prognosis [56]. Additional-
ly, higher levels of MCP-1 are correlated with increased 
angiogenesis, tumor invasion and proliferation [55,57]. 
However, the importance of different MCP in glioma bi-
ology is still a matter of dispute. There is a stronger cor-
relation between MCP-3 levels rather than MCP-1 and the 
density of tumor infiltrating GAMs. A more recent study 
shows that MCP-3 (but not MCP-1) is predominantly ex-
pressed in different glioma cells [58]. MCP-3 is a ligand of 
CCR-1, -2 (both present on monocytes) and -3 receptors, 
while MCP-1 binds only CCR2 [59].

The “CX3C” chemokines (three amino acids between 
the first two cysteines) are represented by a single peptide - 
chemokine (C-X3-C motif) ligand 1 (CX3CL1, fractalkine). 
In the normal brain, fractalkine is secreted by neurons, 
and its receptor CX3CR1 is predominantly expressed on 
microglia. The CX3CL1 – CX3CR1 signaling pathway is 
involved in communication between neurons and micro-
glia, and migration of immune cells into the CNS during 
inflammation. CX3CL1 prevents microglia from excessive 
activation, maintaining cells in a quiescent state. Human 
glioma cells express both CX3CL1 ligand and CX3CR1 re-
ceptor [60,61], and both CX3CL1 and its receptor CX3CR1 
are overexpressed on GAMs isolated from human GBMs 
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[62,63]. Moreover, treatment of patient derived GAMs 
cultured in vitro with CX3CL1 chemokine enhanced the 
expression of matrix metalloproteinase (MMP) 2, 9, and 
14, and activated cell migration and adhesion [63].

INTEGRIN LIGANDS

Integrins are a large family of heterodimeric trans-
membrane adhesion receptors, which play a key role 
in interactions of a cell with a surrounding stroma [64]. 
Upon binding ligands or ECM components integrin di-
mers activate downstream signaling pathways, which 
regulate migration, invasion, proliferation and survival. 
Many tumor cells upregulate expression of specific integ-
rins, for example brain tumor cells overexpress αvβ3 and 
αvβ5 integrins [65]. We analyzed by mass spectrometry a 
secretome of glioma cells and identified two αvβ3/αvβ5 
integrin ligands, osteopontin and lactadherin, as factors 
responsible for polarization of microglia into tumor-sup-
porting cells [66]. With the use of a blocking peptide (our 
in-house designed competitive inhibitor of ligand bind-
ing to αvβ3/αvβ5 integrins) we blocked glioma-microglia 
interactions in vitro. Moreover, silencing of either oste-
opontin or lactadherin in glioma cells implanted to the 
striatum resulted in significantly reduced tumor growth 
[66] . These results point to an important role of both li-
gands and αvβ3/αvβ5 integrin signaling for polarization 
of microglia/macrophages infiltrating a tumor.

Osteopontin (SPP1, secreted phosphoprotein 1) is a 
secreted glycoprotein produced by immune cells under 
inflammatory conditions. Osteopontin contains a RGD 
(arginine–glycine–aspartate) motif interacting with in-
tegrins αvβ1, αvβ3, αvβ5, αvβ6, α8β1, and α5β1, and 
a binding site for CD44, in particular for the isoform 
CD44v6-v7. Thrombin cleaves osteopontin at a conserved 
site (168RS169) and exposes a cryptic 162SVVYGLR168 
motif interacting with a different set of the integrins 
α9β1, α4β1, and α4β7. The RGD and the cryptic sites are 
located in the N-terminal fragment of protein produced 
by thrombin cleavage, whereas the CD44 binding site is 
located in the corresponding C-terminal fragment. Osteo-
pontin regulates recruitment of macrophages and T-cells, 
and the production of inflammatory mediators by these 
cells [67]. On the other hand, SPP1 modulates many func-
tions of cancer cells: it stimulates cancer cell proliferation 
and invasion, and supports tumor angiogenesis [68]. Spp1 
knockdown in rat C6 glioma cells blocked the growth of 
intracranial tumors, reduced the number of pro-tumori-
genic, arginase 1 expressing GAMs [66] and increased in-
filtration of tumor tissues by interferon producing, cyto-
toxic T lymphocytes (unpublished observations). The ob-
servation of different functions of osteopontin produced 
by glioma cells and non-transformed cells was puzzling. 
Differential posttranslational processing of osteopontin 
in glioma cells provides a plausible explanation of the 
contradictory action of osteopontin secreted by differ-
ent cells. The thrombin-cleaved fragments of osteopontin 
have been found in malignant gliomas and conferred sur-
vival advantage for glioma cells [69]. We demonstrated 
that osteopontin produced by non-transformed cells ac-
tivates a pro-inflammatory response in microglia, while 

sequential processing of this protein by thrombin and 
metalloproteinases MMP3 and/or MMP7 in glioma cells 
generated shorter peptides including a microglia activat-
ing form devoid of the inflammatory activity but retain-
ing an ability to polarize microglia [66].

SPP1 mRNA and protein expression is highly elevat-
ed in tumor tissues and sera from GBM patients, and in-
versely correlates with patient survival [70,71]. Recent 
data suggest that high amounts of osteopontin detected 
in the tumors may originate not only from the tumor cells 
(including glioma initiating cells) but also from the host 
cells, such as microglia [27,28,72] or tumor-associated as-
trocytes [73]. Our data show upregulated Spp1 expression 
in different glioma cells. However, we found upregulated 
Spp1 mRNA levels in CD11b+ cells (microglia and infil-
trating macrophages) in the rat brain under inflammato-
ry conditions induced by stroke or in glioma infiltrating 
GAMs (unpublished). Consistently, Gabrusiewicz et al. 
(2016) found upregulated SPP1 expression in CD14+ cells 
(cells of monocytic lineage) infiltrating GBM as compared 
to CD14+ cells isolated from nonmalignant brain tissue. 
The SPP1 mRNA levels in GBM-infiltrating CD14+ cells 
were significantly higher than in matched CD14+ blood 
cells, thus suggesting that gene expression was upregu-
lated upon interaction with glioblastoma [72]. Stromal as-
trocytes also may produce osteopontin in tumor microen-
vironment. In a mouse transgenic model of PDGFB-driv-
en glioma, Spp1 was the most up-regulated gene in tu-
mor-associated astrocytes of the perivascular niche as 
compared to normal brain astrocytes [73]. Nevertheless, 
once produced in the tumor, osteopontin is subjected to 
proteolytic modifications in the extracellular space, thus 
the protein secreted by stromal cells may as well contrib-
ute to the pool of truncated osteopontin modulating the 
local immune responses. When released to circulation, 
osteopontin upregulates infiltration of neutrophiles and 
macrophages in glioblastoma [71].

Moreover, osteopontin secreted by glioma-associat-
ed astrocytes enhanced the cancer stem cell phenotype 
through interactions with CD44 [74]. Tumors contain a 
rare subpopulation of cancer stem-like cells (CSCs), which 
are multipotent, have an ability to self-renew and gener-
ate various more differentiated progeny. We demonstrat-
ed that glioma-derived SPP1 support self-renewal of gli-
oma CSCs and expression of “stemness” markers, which 
indicate its role in maintaining “stemness” of human 
glioma stem-like cells. Osteopontin supported glioma 
CSCs via interactions with the receptor CD44 on glioma 
cells [75]. We demonstrated that SPP1 is overexpressed 
in glioma CSCs due to the presence of stemness factors 
and restoration of the embryonic type regulation of SPP1 
expression. Altogether, the available data support the no-
tion of overexpression of SPP1 predominantly in tumor 
cells and its important role in supporting tumor growth 
and blocking initiation of proper antitumor responses.

The second identified glioma derived factor was lac-
tadherin (milk fat globule-epidermal growth factor 8, 
MFG-E8) a glycoprotein secreted from various cells that 
enhances engulfment of apoptotic cells. MGF-E8 acts by 
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connecting phosphatidylserine on apoptotic cells and 
αvβ3/αvβ5-integrin on phagocytes [76,77]. Apart from 
the scavenging function, MFG-E8 can directly attenu-
ate inflammation and regulate healing of injured tissues 
during intestinal inflammation and brain ischemia [77]. 
MFG-E8-mediated phagocytosis of apoptotic cells by mac-
rophages in vitro, induced secretion of cytokines inducing 
regulatory T cell (Treg), which contributed to anti-inflam-
matory immune responses and development of immune 
tolerance [78]. Binding of MFG-E8 to αvβ3/αvβ5-integrin 
complexes on endothelial cells promoted vascular endo-
thelial growth factor (VEGF)-dependent neovasculariza-
tion [79]. MFGE8 promoted cell/cell and cell/extracel-
lular matrix adhesion during physiologic migration of 
epithelial cells in the intestine [80]. Activation of all these 
processes is highly favorable for tumor growth, however 
the role of MFG-E8 in cancer has been largely overlooked. 
There are only a few published studies exploring its role 
in non-CNS tumors. In a mouse experimental melanoma 
MFG-E8 augmented tumorigenicity and metastatic capa-
bility, enhanced resistance of melanoma cells to apopto-
sis, induced epithelial-to-mesenchymal transition, and 
stimulated invasion and angiogenesis. MFG-E8 also con-
tributed to local immune suppression by evoking Treg 
cell infiltration, suppressing Th1 reactions and cytotoxic 
effects of NK and CD8+ T cells [81]. MFG-E8 has been also 
implicated in development of bladder carcinoma [82] and 
its upregulated expression was reported in 11 cancers in-
cluding glioblastomas [82]. We demonstrated that MfgE8 
knockdown in glioma cells reduced tumor growth and 
GAMs infiltration in orthotropic rat gliomas [66].

Periostin is yet another glioma-derived protein, which 
interacts with integrins on tumor infiltrating myeloid 
cells in murine gliomas. Periostin is a multidomain pro-
tein composed of a signal peptide (necessary for secre-
tion), a small cysteine-rich motif (probably involved in 
the formation of multimers through cysteine disulfide 
bonds), four fasciclin-like domains (FAS1) that interact 
with integrins (αvβ3, αvβ5, α6β4), and a hydrophilic C-ter-
minal region known to interact with other ECM proteins 
such as collagens, fibronectin, tenascin C, or heparin. A 
recent study showed that periostin is produced by glio-
ma CSCs present in the perivascular niche. Periostin acts 
as a chemoattractant for brain macrophages through the 
integrin receptor αvβ3 [83]. Targeting these integrin re-
ceptors with the interfering RGD peptide (Arg-Gly-Asp-
d-Phe-Lys) attenuated interaction between GAMs with 
GSC, reduced their recruitment and polarization into the 
tumor-supportive phenotype[83].

TUMOR MICROENVIRONMENT-DERIVED 
SIGNALS THAT SUPPORT GLIOMA 
GROWTH AND PROGRESSION

The interaction between tumor cells and components 
of its microenvironment is bidirectional. In response to 
tumor derived signals neoplastic cells receive support 
from stromal cells. As already emphasized, the key part-
ners of glioma cells in these interactions are infiltrating 
microglia and macrophages – GAMs, which outnumber 
any other host cell type in the tumor. The supportive 

role of microglia in tumor invasion has been shown in 
the organotypic brain slices and in intracranial gliomas 
[84].Genetic [85] or pharmacological [21,86,87] depletion 
of GAMs reduced tumor growth in experimental murine 
gliomas. The crucial role of GAMs is supported by clini-
cal observations. Accumulation of GAMs characterized as 
CD163+ CD204+ cells in human gliomas was correlated 
with higher tumor grades and worse prognosis [17]. As 
summarized in Figure 1, GAMs facilitate glioma progres-
sion mainly by secreting growth factors and extracellular 
matrix-degrading enzymes to promote proliferation and 
invasion, pro-angiogenic molecules to support formation 
of new blood vessels and immunosuppressive cytokines 
and ligands to hamper the immune response [7,11].

STIMULATION OF GLIOMA GROWTH 
AND INVASION BY GAMS

Microglia synthetize and release stress-inducible pro-
tein 1 (STI1), a cellular prion protein ligand that increases 
proliferation and migration of glioma cells in vitro and in 
vivo [88]. Epidermal growth factor (EGF) released from 
microglia upon binding to its receptor EGFR on glio-
blastoma cells stimulated downstream signaling and 
enhanced invasion of glioma cells in microglia-glioma 
co-cultures [40]. In response to tumor-derived CCL2 mi-
croglia released a cytokine IL-6, which in turn promoted 
invasion of glioma cells [55]. Moreover, CCL2 stimulated 
also its own expression and CD163+ infiltrating GAMs 
are recognized as a major source of CCL2 in GBM pa-
tients. As CCL2 participates in recruiting both Treg and 
MDSCs immunosuppressive cells to a tumor, GAMs were 
acting in this case as amplifiers of the received signal [89].

Matrix metalloproteinases (MMPs), enzymes that de-
grade ECM, are released as inactive pro-forms, that need 
to be cleaved to become active. The prominent enzyme 
for pro-MMP2 cleavage is the membrane-bound metallo-
protease MT1-MMP [90]. Moreover, MT1-MMP degrades 
pericellular substrates, such as collagen networks, thus 
modulating cancer cell invasion. MT1-MMP expression in 
human glioma samples positively correlated with the in-
creasing malignancy grade. Ex vivo and in vivo data sug-
gest that microglia contribute to the majority of upregu-
lated MT1-MMP pool in murine gliomas [91]. Increased 
production of MT1-MMP in microglia is induced by sol-
uble factors released by glioma cells, including versican 
[92], which acts via microglial Toll-like receptor 2 (TLR2) 
[93]. The V0/V1 splice variants of versican, an endoge-
nous ligand of TLR2, are highly expressed in mouse and 
human glioma tissues [92]. MMP2 and MMP9 expression 
may be induced in response to other tumor- or TME-de-
rived factors, including transforming growth factor β1 
(TGFβ1) [94] or CX3CL1 [63].

TGFβ1 controls various features of malignancy, from 
invasiveness (i.e. by upregulating MMPs and mesenchy-
mal markers expression) and “stemness” to angiogenesis 
and immunosuppression [95]. TGFβ1 is produced mostly 
by tumor cells but also was found upregulated in glio-
ma-activated microglia [24,94,96]. Addition of TGFβ1 to 
established and newly generated GBM cell cultures re-
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sulted in induction of morphological changes, enhanced 
expression of mesenchymal markers, potentiation of mi-
gration and invasion, both in vitro and in an orthotopic 
mouse gliomas [97]. We demonstrated that co-culture of 
glioma cells with microglia doubles glioma invasion via 
secretion of TGFβ1, and blocking TGFβ1 signaling in gli-
oma cells impairs tumor growth [96].

Components of Fas/FasL system are expressed in the 
majority of malignant glioma cell lines as well as in hu-
man GBMs [98]. FasL expressed in tumors contributes to 
evasion of immune surveillance by killing Fas express-
ing T cells. Other functions of Fas signaling in gliomas 
are not fully elucidated. Interaction of glioma cells with 
the surrounding brain tissue induced expression of FasL 
in both tumor and host cells [99]. GAMs accumulating 
within tumors may account for a half of the FasL expres-
sion in murine intracranial tumors [100]. In line with this 
observation, we found the increased fasl mRNA levels 
in microglial cells after exposure to glioma conditioned 
medium [101]. Kleber and co-workers [99] demonstrated 
that neutralization of Fas activity blocks migration of gli-
oma cells in a mouse intracranial glioma. Our findings 
show that non-apoptotic Fas signaling activated in the 
autocrine manner or through microenvironment derived 
factors can regulate invasion of glioma cells via modu-
lation of MMP-2 activation, likely by controlling TIMP-2 
expression [101].

SUPPORTING ANGIOGENESIS

Signals generated by GAMs target not only tumor 
cells. Angiogenesis is mediated by pro-angiogenic 
growth factors, including vascular endothelial growth 
factor (VEGF), which induces proliferation, migration of 
endothelial cells and tube formation in vitro [102]. GAMs 
isolated from murine GL261 gliomas overexpress pro-an-
giogenic molecules, such as VEGF and CXCL2 [30]. ECM 
degrading enzymes produced by GAMs as described 
above, are also essential factors in angiogenesis. Intrav-
ital microscopy imaging of a murine orthotopic glioma 
in vivo revealed that microglia motility is highest within 
the perivascular niche compared to other areas of the tu-
mor that suggests dynamic interactions of microglia with 
tumor blood vessels [103]. Accumulation of GAMs not 
only promotes angiogenesis but may contribute to the re-
sistance or escape from anti-angiogenic therapies in glio-
blastoma [104,105].

INHIBITION OF ANTI-TUMOR RESPONSES

Anti-tumor responses of both innate and adaptive 
immunity cells are largely deactivated in patients with 
malignant tumors, including glioblastomas (for a review 
[15]). Apart from tumor immune evasion mechanisms, 
such as already mentioned FasL-mediated T cell death or 
overexpression of programmed death ligand 1 (PD-L1), 
GBMs suppress innate anti-tumor functions of GAMs, 
which are potent effectors of immunosuppression [11]. 
Microglia/macrophages isolated from brains of epileptic 
patients (polarized to the inflammatory phenotype) de-
creased proliferation of co-cultured tumor cells, in con-

trast to GAMs supporting tumor growth [106]. The im-
mune functions of GAMs from postoperative GBM were 
reduced, as these cells did not produce pro-inflammatory 
cytokines (TNFα, I1β, or IL6, IL-2, IL-12), and did not in-
duce T-cell proliferation [19]. These cells expressed major 
histocompatibility complex class II proteins but lacked the 
expression of the co-stimulatory molecules CD86, CD80, 
and CD40 critical for T-cell activation [18]. GAMs secret-
ed immunosuppressive cytokines, such as IL-10, TGFβ, 
IL6 or CCL2, favoring the accumulation of suppressor T 
cells, MDSCs and blocking the cytolytic action of CD8+ T 
cells and NK cells. This resulted in local immunosuppres-
sion preventing detection and eradication of tumor cells 
[7,15,18-20,22].

We demonstrated that glioma-derived factors induce in 
primary rat microglial cultures selected signaling pathways 
and a gene expression program associated with upregula-
tion of genes coding for proliferation regulators, such as 
ID (inhibitor of DNA binding) 1/3 and c-Myc, Arg1, MT1-
MMP, CXCL14, and numerous cytokines/chemokines 
implicated in immune cell trafficking. Microglial cultures, 
when stimulated with an immunomodulatory lipopolysac-
charide, induced classical inflammation-related genes and 
signaling pathways related to inflammation (p38 MAPK, 
JNK and NFkB) [24]. Transcriptomic analyses of rat glio-
ma-bearing hemispheres revealed overexpression of in-
vasion and immunosuppression-related genes, reflecting 
the immunosuppressive microenvironment. This was as-
sociated with accumulation of amoeboid, pro-tumorigenic 
GAMs and Treg cells combined with the reduced presence 
of Tc lymphocytes [28]. GAMs isolated by flow cytometry 
as CD11b+CD45low cells from experimental rat gliomas [28] 
or magnetically-sorted CD11b+ cells from experimental 
murine EGFP-GL261 gliomas [21], displayed the pro-inva-
sive and immunosuppressive type of activation. Detailed 
studies of gene expression in GAMs sorted from benign 
and malignant gliomas showed downregulation of IKKβ 
expression in the latter. IKKβ is a kinase, which phosphor-
ylates IκB proteins (inhibitors of NFκB) and represents a 
convergence point for many signaling pathways leading 
to NFκB activation. Activation of NFκB is instrumental for 
activation of inflammation-related genes. The observed 
downregulation of IKKβ expression and reduced activa-
tion of NFκB in GAMs from malignant gliomas may ex-
plain the lack of inflammatory responses in these tumors. 
Computational analyses of public datasets on gene expres-
sion in GBMs showed defective expression of immune/
inflammatory response genes in malignant versus benign 
gliomas [26]. Thus, although various immune effector cells 
are recruited to the tumor site, their anti-tumor functions 
are downregulated. This is instigated by tumor polarized 
GAMs, which orchestrate local immunosuppression, and 
contribute to systemic immune deficits in GBM patients.

TUMOR MICROENVIRONMENT-GLIOMA  
INTERACTIONS AS TARGETS FOR 
ANTI-TUMOR THERAPIES

Due to the lack of efficient treatment against glioblas-
toma, strategies that combine anti-tumor agents with tar-
geting the tumor microenvironment gained more attention 



136 www.postepybiochemii.pl

recently. One of the best example is combining cytotoxic 
agents with anti-angiogenic therapies or T-cell based thera-
pies with immune checkpoint inhibitors. Some of the new-
ly proposed therapeutic approaches are focused on mod-
ulating the functions of GAMs either by blocking chemo-
attractant receptors or their ligands to reduce recruitment 
of GAMs and/or by changing the phenotype of GAMs 
to transform an immunosuppressive tumor environment 
into anti-tumorigenic one with restored immune responses 
[107]. Several studies showed that GAMs promote angio-
genesis and may participate in the escape from anti-angio-
genic therapies [105]. To ensure success of the checkpoint 
inhibitors, CD8+ T cells, the main target of this treatment, 
should exert full cytotoxicity against tumor cells. Recent 
findings emphasize contribution of tumor-associated 
macrophages to the insufficiency of checkpoint therapies 
[108,109]. As described earlier, GAMs can impede anti-tu-
mor immune responses by different mechanisms [7,15]. 
Given the abundance and leading role of GAMs in the tu-
mor microenvironment, there is a rationale in combining 
other treatments with intervention targeting these cells.

One of the strategies to target GAMs is the blockade of 
CSF-1R that is essential for the recruitment, differentia-
tion, and survival of macrophages associated with differ-
ent types of tumors [109]. Blocking the CSF-1R signaling 
with anti-CSF-1R antibodies (Emactuzumab or Pexidar-
tinib) or small molecule inhibitors resulted in reduced 
tumor infiltration by GAMs and/or changes in the func-
tional phenotype of GAMs [40, 110]. Despite the observed 
reduction of tumor growth and increased animal survival 
in preclinical studies, anti-CSF-1R antibodies were not 
efficient as a monotherapy in patients with recurrent 
GBMs [111]. This resistance to GAMs depletion with the 
use of CSF-1R inhibitor was ascribed to compensation by 
other glioma derived factors such as CSF-2, IL-4, IFN-γ 
[41,42,112]. Nevertheless, as CSF-1R blockade resulted in 
increased CD8+/CD4+ T cell ratio suggesting restoration 
of some anti-tumor immunity capacities [110], there was 
a rationale for combining CSF-1R antagonists with im-
mune checkpoint inhibitors. Recently, the phase I clinical 
study was initiated combining Emactuzumab with an an-
ti-PD-L1 antibody.

Another example of attempted blockade of GAM re-
cruitment is inhibition of CXCR4, a receptor of SDF-1/
CXCL12 -, by synthetic peptides, such as AMD3100 or 
peptide R [113]. SDF-1 is an important factor in radiother-
apy-induced tumor invasion facilitated by macrophages. 
Three noncytotoxic drugs: minocycline (an antibiotic tar-
geting GAMs and MMPs), telmisartan (an antihyperten-
sive drug) and zoledronic acid (a bisphosphonate) have 
been recently tested as addition to standard radiotherapy 
and temozolomide for GBM patients in a clinical trial. All 
three drugs exert an inhibitory activity on MCP-1/CCL2 
synthesis. Since CCL2 attracts circulating monocytes to 
the tumor, the drugs have been re-purposed to inhibit or 
reverse GAM-mediated immunosuppression, angiogene-
sis and tumor growth [114].

Preclinical studies, including ours, point to import-
ant role of αvβ3/αvβ5 integrin signaling for recruitment 

and polarization of GAMs. We used the blocking pep-
tide (our in-house designed competitive inhibitor of tu-
mor-derived ligands binding to αvβ3/αvβ5 integrins) to 
interfere with glioma-microglia interactions in vitro and 
we blocked polarization of microglia to the pro-invasive 
phenotype [66]. Zhou et al. demonstrated that blockade 
of periostin-integrin signaling with the RGD peptide in-
hibits recruitment of tumor infiltrating myeloid cells [83]. 
A cyclic pentapeptide called Cilengitide (EMD 121974, 
cyclo-(Arg-Gly-Asp-DPhe-NMe-Val) was identified as a 
potent and selective αvβ3/αvβ5 integrin antagonist. In 
preclinical studies, cilengitide effectively inhibited the 
growth of orthotopic glioblastoma, however the primar-
ily identified mechanism was the inhibition of angiogen-
esis. Cilengitide entered clinical trials and showed an-
ti-tumor activity against malignant gliomas, when was 
given alone or in combination with chemotherapy [115]. 
Recently published results of the randomized phase III 
CENTRIC and phase II CORE clinical trials did not show 
consistent effects on GBM patient outcomes [116]. How-
ever, the detailed analysis of the CORE study discovered 
that improved progression-free survival and overall sur-
vival in patients treated with cilengitide correlated with 
higher αvβ3 levels in tumors [117]. Data on the intra-tu-
mor immune infiltration or phenotype of GAMs in re-
sponse to cilengitide treatment are not available.

Beside the approaches to interfere with extracellular 
ligand-receptor interactions, there is an attempt to over-
pass the pro-tumorigenic microenvironment by target-
ing GAMs via inhibition of STAT3 transcription factor. 
STAT3 is a key factor for glioma growth as a regulator 
of proliferation promoting genes [118] and suppressor 
of expression of CD80, CD86 and MHCII molecules in 
GAMs [119]. STAT3 downregulation by short interfering 
(si)RNA in GL261-bearing mice contributed to anti-tu-
morigenic activation of GAMs with increased TNFα ex-
pression, reduced glioma growth and increased animal 
survival [120]. The STAT3 pharmacological inhibitor - 
WP1066- is currently in the phase I clinical trial for glio-
ma as well as melanoma brain metastases.

The present study shows a crucial role of tumor micro-
environment, in particular of tumor infiltrating microg-
lia/macrophages in growth and progression of malignant 
gliomas. Uncovering novel mechanisms, by which glioma 
cells exploit microglia and other types of cells in the tu-
mor microenvironment to increase their growth, invasion 
and resistance to anti-tumor treatments can indicate po-
tential new therapeutic targets and help to develop new 
therapies for the currently incurable malignant glioblas-
tomas.
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STRESZCZENIE
Rosnąca liczba danych doświadczalnych i klinicznych wskazuje na aktywację prawidłowych komórek znajdujących się w guzie i ich istotną 
rolę w progresji nowotworu. Komórki nowotworowe wykorzystują ścieżki komunikacji między komórkami do oddziaływania na otaczające 
je mikrośrodowisko i do wspierania swojego wzrostu. W glejakach złośliwych, czynniki wydzielane przez nowotwór wywołują liczne zmia-
ny, w tym powodują napływ występujących w mózgu komórek mikrogleju oraz makrofagów z krwi obwodowej. Komórki te zamiast zwal-
czać nowotwór, ulegają przeprogramowaniu i aktywują nowe programy transkrypcyjne i syntezę białek regulujących przebudowę macierzy 
zewnątrzkomórkowej, inwazyjność komórek nowotworowych, proces tworzenia nowych naczyń krwionośnych. Jednocześnie czynniki z 
komórek glejaka oraz te produkowane przez zmieniony mikroglej/makrofagi blokują odpowiedź przeciwnowotworową komórek układu 
odpornościowego. Molekularne podłoże tych wzajemnych złożonych interakcji jest głównym przedmiotem niniejszego artykułu.
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