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From c-Fos to MMP-9: In control of synaptic plasticity  
to produce healthy and diseased mind, a personal view

ABSTRACT

c-Fos is a component of AP-1 transcription factor. Three lines of evidence support pivotal 
role of c-Fos in learning and memory: (i) learning experience markedly enhances its ex-

pression; (ii) blocking od c-Fos impairs, while optogenetic activation of c-Fos expressing neu-
rons supports learning and memory; (iii) c-Fos/AP-1 gene targets in activated neurons, encod-
ing tissue inhibitor of metalloproteinases-1 (TIMP-1) and matrix metalloproteinase 9 (MMP-
9) play a major role in synaptic plasticity that underlies learning and memory. TIMP-1 and 
MMP-9 compose an extracellularly operating enzymatic system active locally around excita-
tory synapses to modulate their morphology, molecular content and efficacy. Animal studies 
have implicated MMP-9 in a variety of neuropsychiatric conditions, e.g., epileptogenesis, 
autism spectrum disorders, development of addiction, and depression. In humans, MMP-9 
contributes to epilepsy, alcohol and cocaine addiction, Fragile X Syndrome, schizophrenia 
and bipolar disorder. In aggregate, all those conditions can be considered as reflecting either 
healthy or diseased mind.

C-FOS AS THE FIRST LEARNING-ACTIVATED GENE DISCOVERED

In 1986, after postdoctoral studies on molecular biology of cell proliferation, 
I joined the Nencki Institute with an idea to initiate investigations into the mind 
in the brain. My research started with a few assumptions:

• learning and memory offer a window into the mind, and because they can be 
veridically studied in experimental animals, this is particularly opportune;

• molecular biology provides the most powerful toolbox to approach biological 
questions;

• cell activation of various kinds follows a partially uniform path, involving 
enhanced expression of selective genes, such as nuclear proto-oncogenes.

The first two assumptions appear obvious nowadays, so let me comment on 
the third one. It was discovered in the late 1970s and early 1980s that oncogenes 
(the genes that give rise to cancer, e.g., via oncogenic retroviruses) have normal, 
cellular counterpart genes called proto-oncogenes, which are involved in control 
of the cell division cycle in healthy cells [1,2]. In fact, we demonstrated that the 
protein c-Myc, encoded by a nuclear proto-oncogene (i.e., protooncogenic protein 
with the cell nucleus localization), was capable of initiating the cell division cycle 
[3]. Because c-Myc was found in the cell nuclei, it was immediately hypothesized 
that this and similarly located protooncogenic proteins (such as c-Fos) might 
have an impact on gene regulation, thus affecting lasting cellular responses. 
On other hand, it was shown in the 1960s that inhibitors of de novo protein 
synthesis, when introduced into the brains of animals, prevented the formation 
of memories lasting longer than a few hours [4,5]. This led to the conclusion that 
certain proteins that were produced during the process of learning were crucial 
for long-term memory. Soon thereafter, it was demonstrated that a similar 
inhibitory effect on memory was also exerted by substances that block RNA 
synthesis (i.e. inhibiting gene expression) [5].

Considering those two independent lines of research, a review paper on pro-
to-oncogenes in the cell cycle, proposed that proto-oncogenes might also play a 
pivotal role in other biological processes thought to involve gene expression [6]. 
Soon thereafter, the idea suggesting its relevance also to learning and memory 
was explicitly put forward [7]. Other researchers expressed similar views at that 
time [8,9]. Therefore, we were encouraged to seek out which genes were acti-
vated in the brain under the influence of external stimuli, capable to activate 
neurons. We initially showed that when glutamic acid, an important neurotrans-
mitter that stimulates neurons to fire and had already been recognized as piv-
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otal for learning and memory, was introduced into the rat 
brain, it very quickly (within 15 min) and transiently (the 
effect was gone by 45 min) caused the activation of the gene 
encoding the c-Fos protein, as measured by the levels of its 
mRNA [10]. Other studies demonstrated that excessive neu-
ronal activity, such as produced by seizures, also markedly 
elevated c-Fos expression in the rat brain [11,12], and Hunt 
et al. [13] reported that physiological stimulation of rat pri-
mary sensory neurons caused the expression of c-Fos in the 
spinal cord.

Immediately afterwards, we raised the question of 
whether evoking long-term potentiation, LTP (that is an 
electrophysiological model of mechanisms underlying 
learning and memory) by electrical stimulation in the brain 
in vivo, as well as exposing a rat to a behavioral, learning 
episode, might also produce the same effects on gene ex-
pression. Indeed that proved to be the case [14-22]. Impor-
tantly elevated c-fos mRNA expression was observed only 
when the animals were learning a new task, but not when 
they vigorously performed already learned behavior [18]. 
Similar experiments were also carried out by K.V. Anokhin 
and colleagues, arriving at similar results (activation of the 
gene encoding c-Fos [23,24]. Over the following years, it has 
been repeatedly demonstrated that the protein c-Fos ap-
pears in nerve cells only when a given neuron is stimulated 
under conditions making it prone to synaptic plasticity [25] 
and even specific links of c-Fos expression to long-lasting 
memories were reported [26].

Despite the wealth of correlative data implicating c-Fos 
in learning and memory, the functional role of the protein in 
these phenomena has only recently been proven unequivo-
cally. Using a behavioral paradigm, in which mice had to 
learn to discriminate sounds of two different frequencies—a 
task known to rely on functionally intact auditory cortex—
we have demonstrated that acquisition of this behavior 
was greatly impaired when c-Fos was downregulated spe-
cifically in this brain area (in result of lentivector-mediated, 
shRNA-driven blocking of the protein synthesis) [27]. No-
tably, also auditory discrimination-evoked synaptic plas-
ticity was impaired under those conditions [27]. Synaptic 
plasticity refers to modifications of synaptic efficacy within 
vast neuronal network of the brain that processes, in a mal-
leable way, incoming information to produce behaviors that 
change because of the associated past stimuli and their re-
inforcing value.

This result is in line with the previous studies on c-Fos 
knockout and antisense oligonucleotides that negatively 
affected c-Fos levels [28,29]. However, we shall stress that 
those previous data suffered from limited specificity, prob-
ably because the tools employed diminished basal neuronal 
activity (that was found intact under our experimental 
conditions, see de Hoz et al. [27]). Most importantly, very 
elegant studies have conversely shown that artificial, op-
togenetic stimulation of neurons that expressed c-Fos in 
response to a learning experience maintain physiological 
memory traces and even create synthetic ones [30-32]. Thus, 
it has been found that neurons with transient, learning-
evoked c-Fos expression are both necessary and sufficient to 
support the memory trace.

Finally, the last line of evidence pointing to c-Fos role in 
learning and memory comes from the investigation of its 
target genes. We have demonstrated that c-Fos activates 
the gene encoding TIMP-1 (tissue inhibitor of matrix met-
alloproteinases, Jaworski et al. [33]), a protein capable of 
blocking the activity and thus controlling the extracellular 
enzyme MMP-9 (matrix metalloptoteinase-9). This, in turn, 
shifted our attention to MMP-9 as being targeted by TIMP-
1. Interestingly, numerous evidence outside the nervous 
system suggested that also MMP-9 might be regulated by 
c-Fos/AP-1 [34]. In fact, we have shown that this is the case 
also in the brain, after behavioral training of fear condition-
ing and in BDNF-activated neurons in culture [35,36].

MMP-9: AN EXTRACELLULAR PROTEASE

MMP-9, matrix metalloproteinase-9 is a protease that op-
erates predominantly extracellularly. It belongs to a larger 
family of enzymes (metalloproteinases) that together with 
other similar molecules form an abundant class of metzincins 
(including also astacins, ADAMs, ADAMTSs, etc., see for re-
view: [37,38]). Originally, we have reported that MMP-9 un-
dergoes a massive activation in the dentate gyrus (DG) of the 
hippocampus in response to treatment with kainate [39]. This 
result was very surprising, since until then multiple studies 
implicated MMP-9 in pro-neurodegenerative, pathological 
responses, easily associated with excessive, tissue detrimen-
tal proteolysis [40-42]. Although kainate treatment produces 
CA1 and CA3 hippocampal cell loss, the DG remains spared 
and even is a subject of massive, albeit aberrant synaptic 
plasticity [43]. Even more surprising was our discovery that 
increases in MMP-9 in dendritic tree area of DG concerned 
not only the protein and enzymatic activity, but also mRNA, 
suggestive of its translocation towards synapses that were 
undergoing plastic reorganization. In result, we have put 
forward hypotheses of possible role of MMP-9 in dendritic 
remodeling and synaptic plasticity, as well as of local, den-
dritic/synaptic translation of MMP-9 during plasticity [39].

MMP-9 IN SYNAPTIC PLASTICITY, 
LEARNING AND MEMORY

The hypothesis of an MMP-9 role in physiological plas-
ticity was positively verified by Nagy et al. [44] as well as 
Meighan et al. [45] who demonstrated, by various means 
that MMP-9 was indispensable for late (over half an hour) 
phase of hippocampal (CA3-CA1) LTP, as well as for hip-
pocampal learning and memory (contextual fear condition-
ing, water maze), as shown unequivocally with MMP-9 
knockout (KO) mice, along other less specific means. Fur-
thermore, increases in MMP-9 protein and enzymatic activ-
ity levels under those conditions were also demonstrated 
[44,45]. Soon thereafter, these observations were extended 
to other experimental systems of LTP, learning and memory 
that all involved the hippocampus [46-52]; for review: [53-
55].

Surprisingly, formation of aversive memories that re-
lies on lateral amygdala (LaA) apparently does not require 
MMP-9 activity [44,56], and LTP might be evoked on the 
external capsule-LaA pathway, even when MMP-9 is miss-
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ing [57]. An important role of MMP-9 in synaptic function 
underlying postnatal and even adult cortical plasticity has 
also been shown for the visual and somatosensory cortex 
[58-62]. Similarly, requirement for MMP-9 has also been 
demonstrated for chemical LTP (cLTP) in hippocampal cul-
tures [63-66].

CENTRAL NUCLEUS OF THE AMYGDALA 
AS A HUB FOR APPETITIVE PLASTICITY, 
LEARNING AND MEMORY

Amygdala is a heterogeneous brain structure (at least 13 
sub-regions can be easily discerned) that is well known for 
its pivotal role in emotional and motivational behaviors. 
Almost 20 years ago we have demonstrated that c-Fos ex-
pression in this brain region can be very precisely associated 
with specific behaviors [67], indicating functional heteroge-
neity of amygdalar sub-regions. To follow on this finding, 
we then reported that the central nucleus of the amygdala is 
strongly c-Fos labeled after appetitive training, but virtually 
missing c-Fos after acquisition of aversive behaviors in rats 
and mice [68]. Reviewing all of the existing literature on this 
topic further reinforced such a notion [69]. Incidentally, we 
have also found that c-Fos expression in this brain region is 
conspicuously related to a phenomenon of emotional con-
tagion, a simple form of empathy [70], but is neither associ-
ated with acquisition nor extinction of fear behavior [71].

Considering the c-Fos—MMP-9—synaptic plasticity link 
we have established, we have next investigated whether in-
deed MMP-9, especially in the central amygdala is critical for 
appetitive learning and memory. Knapska et al. [56] provided 
very strong support for such a notion. In particular, we have 
shown that global KO of MMP-9 impairs appetitive, but not 
aversive learning and memory and then, selective inhibition 
of MMP-9 extracellularly within the central amygdala results 
in the same phenotype – impairs appetitive learning, leav-
ing intact aversive learning and memory [56]. Interestingly, 
LTP from Lateral Amygdala to Basal Amygdala (BA) and 
from BA to medial Central Amygdala are greatly impaired 
when MMP-9 activity is not available [57]. Thus, MMP-9 is 
not universally mandatory for synaptic plasticity, learning 
and memory. Nevertheless, activity of this molecule is an ob-
ligatory component for specific forms of those phenomena, 
especially in the hippocampus and central amygdala.

Most recently, Lebitko and colleagues (submitted) have 
found that selective blocking of c-Fos in the central amygdala 
by lentivirally delivered specific shRNA (used previously by 
de Hoz et al., 2018 [27]) impairs specifically preparatory but 
not consummatory appetitive behaviors. These results go 
against a mainstream view of central amygdala as playing 
important role solely in aversive learning, acting as a relay 
station towards the brain stem. On the other hand, recent 
data from Tonegawa laboratory have supported our results 
[72,73], appreciably acknowledging our pioneering findings.

LOCAL TRANSLATION OF MMP-9

We have also followed the hypothesis of local transla-
tion of MMP-9 at/around activated excitatory synapses. It 
should be noted that our other studies clearly pointed to 

MMP-9 presence on dendritic spines that harbor postsyn-
aptic areas of excitatory synapses. On other hand, to MMP-9 
remained non-detectable at either presynaptic domains or 
GABA-ergic synapses [74,75]. Konopacki et al. [76], using 
fluorescent in situ hybridization combined with immuno-
fluorescent protein detection, reported on a patchy MMP-9 
mRNA accumulation in DG dendrites in response to kainate 
treatment. This result reinforced the idea of MMP-9 mRNA 
being translocated, after kainate, towards excitatory synaps-
es. Dziembowska et al. [77] and Janusz et al. [78] provided a 
number of experimental data clearly showing that indeed 
MMP-9 mRNA can undergo local synaptic translation to 
produce the protein after activation of excitatory synapses. 
These experiments have also revealed that MMP-9 produc-
tion, release and synaptic availability after synaptic activa-
tion occurs within a few minutes following treatment with 
glutamate (see also [79]). Importantly, our results have been 
confirmed and even extended to human brain tissue [80]. 
Incidentally, another interesting layer of MMP-9 regulation 
at the mRNA stability level has recently been revealed by 
Zybura-Broda et al. [81].

MMP-9 IN STRUCTURAL AND FUNCTIONAL 
SYNAPTIC PLASTICITY – THE MECHANISMS

The evidence for pivotal role of MMP-9 in structural plas-
ticity of dendritic spines comes from hippocampal cultures 
and slices, as well as the brain in vivo (see [55,82,83] for re-
view). Two major observations have been made. First, ex-
cessive abundance of MMP-9 produces elongation and thin-
ning of the spines [84,85]. On the other hand, physiological-
ly and locally available MMP-9 evokes conversion of small 
spines to larger, more efficacious mushroom ones [66,86]. 
We have recently explained this apparent paradox, by find-
ing that the full function of MMP-9 requires first its activity, 
followed by subsequent inhibition, exerted physiologically 
by TIMP-1 [87]. We have also found that excessive MMP-9 in 
transgenic rats with neuronal overexpression of the enzyme 
[74] results in higher, than in the wild-type rats, proportion 
of silent synapses and lower AMPA/NMDA receptor ratio, 
along with impaired LTP. Treatment with MMP inhibitors 
in those transgenics normalized (i.e., enhanced) LTP as well 
as unsilenced the synapses, and finally resulted in increased 
AMPA/NMDA receptor ratio [87].

Using hippocampal cultures subjected to cLTP we have 
found that this form of synaptic plasticity correlates with 
growth of small spines into larger mushroom ones, concom-
itantly with synaptic accumulation of GluA1 AMPA recep-
tors that are at same time less mobile at the synapses [66]. 
All these major attributes of synaptic plasticity were lost 
when cLTP treatment was carried under MMP inhibition, 
i.e., neither spine growth, nor GluA1 accumulation and im-
mobilization at the synapses could be observed under such 
conditions [66].

Several other reports supported important role of MMP-9 
in structural plasticity of dendritic spines, also in vivo. Sidhu 
et al. [88] observed that MMP-9 KO mice displayed larger 
spine head areas in the hippocampus at 1-2 weeks postna-
tally (at later times this value became the same as in the wild 
type animals). Interestingly, Aujla and Huntley [89] found 
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that levels of MMP-9 peaked in the hippocampus more or 
less at the same time. Murase et al. [90] showed that MMP-9 
KO mice had unaltered spine density in the hippocampus 
of adult animals, however, there was increase in propor-
tion of mushroom spine on the expense of thin ones. Kelly 
et al. [62], while studying ocular dominance plasticity in the 
mouse visual cortex, observed no change in the morphology 
of existing dendritic spines in MMP-9 KO, however, spine 
dynamics were altered and KO mice showed increased 
turnover of dendritic spines over a period of 2 days. Fragk-
ouli et al. [91] constructed mice overexpressing MMP-9 and 
reported on increased spine density in the hippocampus 
and somatosensory cortex after behavioral training of adult 
animals.

SYNAPTIC CELL ADHESION MOLECULES AS 
MAJOR NEURONAL MMP-9 TARGETS

It may appear obvious that MMP-9 should cleave com-
ponents of the extracellular matrix (ECM) surrounding the 
synapses. In fact, Tsien [92] has proposed that such a cleav-
age may relieve the synapses/dendritic spines from local 
environmental constraints limiting their growth, any by 
this virtue allowing them to undergo plastic changes sup-
porting learning and memory. It should be noted that dis-
ruption of ECM may indeed affect synaptic plasticity [93-
96]. Although, possible role of MMP-9 in ECM remodeling 
has been suggested by studies on the cerebellum, no clear 
MMP-9 substrate has emerged, and in fact we have failed to 
demonstrate that MMP-9 cleaves suspected substrate, tenas-
cin-C [97,98]. Similarly, it remains as an attractive, though 
unproven possibility that MMP-9 might cleave CD44 that 
may anchor hyaluronic acid-based ECM at the neuronal cell 
membrane [99].

Notably, treatment with excessive exogenous MMP-
9 did not produce any gross alteration of ECM in hip-
pocampal cultures [100]. Furthermore, no ECM proteins 
surrounding synapses have been identified as MMP-9 sub-
strates. In fact, most of such substrates belong to the cat-
egory of cell adhesion molecules (CAMs, [101-103]). Even 
more interestingly, all of them are CAMs that are located 
postsynaptically. The group includes: β-dystroglycan, 
ICAM-5, neuroligin-1, SynCAM2 (synaptic cell adhesion 
molecule-2 also known as necl-3) and nectin-3 [79,104-
108]. All of those proteins may form trans-synaptic ad-
hesive apparatus with their presynaptic binding partners 
(β-dystroglycan and neuroligin-1 with neurexins, nectin-3 
with nectin-1, ICAM-5 with ICAM-5, SynCAM2 with Syn-
Cam1). Other neuronal MMP-9 substrates identified to 
date are collapsin response mediator protein-2 (CRMP-2, 
[109]), NGF [110] and pro-BDNF [111].

Considering trans-synaptic adhesive apparatus as a ma-
jor MMP-9 target and taking into account other aforemen-
tioned information, one may suggest that following gluta-
mate stimulation, especially by NMDA receptors, MMP-9 
is released from small dendritic spines around postsynaptic 
domains of excitatory synapses. Next, MMP-9 destabilizes 
synaptic structure by breaking trans-synaptic connections 
through limited cleavage of postsynaptically originating 
proteins bound to their presynaptic partners. This way, the 

post-synapse and its dendritic spine carrier are allowed to 
expand and maybe search for a new presynaptic partner. 
As soon as MMP-9 is inhibited by endogenous TIMP-1, the 
pre-postsynaptic connection is re-established, however in a 
modified, possible more efficacious form. Such a scenario is 
in a perfect agreement with the available experimental data 
and provides a good explanation for MMP-9 pivotal role in 
the synaptic plasticity, learning and memory.

However, the molecular mechanisms delineated above, 
although plausible are not proven yet. Thus, either alterna-
tive or complementary modes of MMP-9 function in syn-
aptic plasticity have to be considered. Especially intriguing 
is partial cleavage of pro-BDNF to produce its mature form 
[111] as well repeatedly described mediation of MMP-
9 synaptic effects via integrins, in particular integrin β1 
[44,63,85,86].

MMP-9 AS EXECUTOR OF C-FOS FUNCTION IN 
SYNAPTIC PLASTICITY, LEARNING AND MEMORY?

Considering the aforementioned evidence implicat-
ing c-Fos in synaptic plasticity in learning, and its func-
tion in regulating MMP-9 and TIMP-1 gene expression, 
we hypothesize that c-Fos role in these phenomena might 
in fact be executed via MMP-9 and TIMP-1. A following 
molecular scenario might be even considered here. During 
learning experience, glutamate activates NMDA receptors 
to release MMP-9 and TIMP-1 to control the synaptic plas-
ticity as described above. Since both proteins are released 
outside the cell and cannot be recuperated, there is a need 
to replenish them. MMP-9 activity, e.g., by converting pro-
BDNF to its mature form (mBDNF) produces a signal that 
through TrkB receptors and ERK kinases is delivered to 
SRF transcription factor that is the major upregulator of c-
fos gene expression in activated neurons. Next, the protein 
product, c-Fos in a form of AP-1, enhances transcription of 
MMP-9 gene.

MMP-9 IN NEUROPSYCHIATRIC DISORDERS:  
A CASE OF ABERRANT SYNAPTIC PLASTICITY?

Besides being pivotal for physiological synaptic plastic-
ity, as described above, MMP-9 has also been implicated 
in aberrant plasticity that may contribute to a variety of 
neuropsychiatric conditions [55,112]. A particular strong 
case has been presented for epileptogenesis (for review: 
[55,113]), i.e., development of epilepsy. In particular, Wil-
czynski et al. [74] reported that MMP-9 KO mice were 
deficient in developing epilepsy in a model of chemical 
kindling of seizure phenotype, whereas rats overexpress-
ing MMP-9 selectively in neurons were more prone to 
this phenotype. This genetic proof-of-concept for MMP-9 
in epileptogenesis was further supported by studies on 
chemical inhibitors of the enzyme and other animal mod-
els [111,114-116]. Recently, Pijet et al. [117] have employed 
traumatic brain injury-evoked epileptogenesis, clinically 
relevant mouse model, to demonstrate important contri-
bution of MMP-9 to epilepsy development. Most interest-
ingly, elevated MMP-9 was found in human epileptic brain 
samples [118-121]. Furthermore, Zybura-Broda et al. [121] 
implicated progressive increase in MMP-9 levels, possibly 
dependent on its gene promoter demethylation, in human 
epilepsy and rat epileptogenesis.



Postępy Biochemii 64 (2–3) 2018 105

Similarly, addiction to substances of abuse has repeatedly 
been linked to MMP-9 levels [122-132]. Our recent study has 
demonstrated that MMP-9 in the central amygdala controls 
synaptic plasticity, as well as motivation to seek alcohol in 
addicted mice and, furthermore, in humans MMP-9 gene 
polymorphism leading to higher MMP-9 levels supports 
motivation towards alcohol [132].

Moreover, functional role of MMP-9 has been demon-
strated in fragile X syndrome (FXS) that offers a very inter-
esting example of autistic conditions dependent on a sin-
gle gene (encoding fragile X mental retardation 1 protein, 
FMRP). Bilousova et al. [84] was the first to show that FMRP 
KO mice displayed increased MMP-9 activity and then 
Janusz et al. [78] found that local translation of MMP-9 is 
negatively controlled by FMRP. Thus, FMRP deficiency re-
leases MMP-9 local translation from this negative control, 
resulting in higher MMP-9 levels at the synapse. Similarly, 
Gkogkas et al. [80] found that the eukaryotic translation 
initiation factor P-eIF4E and MMP-9 expression were both 
elevated in the brains of human FXS patients and in FMRP 
deficient mice. Furthermore, Bilousova et al. [84] observed 
dendritic spine elongation in neuronal cultures that were 
derived from FMRP KO, a phenomenon that could be nor-
malized by application of minocycline, which inhibited the 
enzymatic activity of MMP-9. Minocycline treatment also 
reduced anxiety in FMRP knockout mice [84] and reversed 
the deficit in ultrasonic vocalizations [133]. Finally, Sidhu et 
al. [88] crossed MMP-9 KO mice with FMRP KO mice, to al-
leviate all of the major symptoms of FXS that were observed 
in FMRP KO. Recently Wen et al. [134] reported that MMP-9 
levels were elevated in P12-P18 auditory cortex of Fmr1 KO 
mice and genetic reduction of MMP-9 to WT levels restored 
the formation of perineuronal nets (a form of ECM) around 
parvalbumin expressing inhibitory interneurons. Moreover, 
in vivo single-unit recordings from auditory cortex neurons 
showed enhanced spontaneous and sound-driven respons-
es in developing Fmr1 KO mice, which were normalized 
following genetic reduction of MMP-9. In aggregate, these 
results addressed abnormal sensory responses associated 
with FXS and autism spectrum disorders. Notably, the ani-
mal data strongly supported the consideration of minocy-
cline as a treatment for FXS. Indeed, several clinical studies 
that have been conducted, offerring promising results [135-
137] (for review, see [139]).

Finally there is also a growing list of findings highly sug-
gestive of a role of MMP-9 in schizophrenia [140] and Lepeta 
et al. [141] have recently shown that MMP-9 gene polymor-
phism located in 3’UTR of its mRNA contributes to severity 
of delusional symptoms in humans suffering from schizo-
phrenia, along with affecting local MMP-9 production at the 
dendritic spines as well as their morphology.

CONCLUDING REMARKS

The evidence for a role of c-Fos/TIMP-1/MMP-9 path-
way in synaptic plasticity appears very compelling, indeed. 
The evidence derives from studies documenting enhanced 
c-Fos and MMP-9 levels in response to stimuli that evoke 
plasticity and, moreover, the MMP-9 increases occur in/

around stimulated excitatory synapses. Furthermore, block-
ing of c-Fos and MMP-9 impairs the plasticity. These data 
seem to explain well the role of the c-Fos—MMP-9 pathway 
in learning and memory, and may be also reveal how MMP-
9 contributes to major neuropsychiatric disorders.
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STRESZCZENIE
c-Fos jest składnikiem czynnika transkrypcyjnego AP-1. Trzy linie dowodów wspierają kluczową rolę c-Fos w uczeniu się i pamięci: (i) 
uczenie się pobudza jego ekspresję; (ii) blokowanie c-Fos upośledza, podczas gdy optogenetyczna aktywacja neuronów wyrażających c-Fos 
wspomaga uczenie się i pamięć; (iii) docelowe geny dla c-Fos/AP-1 w pobudzonych neuronach, kodują tkankowy inhibitor metaloproteaz-1 
(TIMP-1) oraz metaloproteazę macierzową 9 (MMP-9), które to białka odgrywają kluczową rolę w plastyczności synaptycznej, leżącej u pod-
staw uczenia się i pamięci. TIMP-1 i MMP-9 tworzą działający zewnątrzkomórkowo układ enzymatyczny, aktywny miejscowo wokół synaps 
pobudzających i modulujący ich morfologię, skład biochemiczny oraz efektywność. Badania na zwierzętach sugerują zaangażowanie MMP-9 
w różnych stanach neuropsychicznych, np. rozwoju padaczki, zaburzeniach ze spektrum autyzmu, rozwoju uzależnienia i depresji. U ludzi 
MMP-9 przyczynia się do padaczki, uzależnienia od alkoholu i kokainy, zespołu łamliwego chromosomu X, schizofrenii i zaburzeń afektyw-
nych dwubiegunowych. Łącznie wszystkie te sytuacje można uznać za przykładowe dla zdrowego lub chorego umysłu.
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